Frequency
CAKUT is estimated to occur in 1 in 100 to 500 newborns. These abnormalities are the most common cause of end-stage renal disease in children.
Causes
The causes of CAKUT are complex. It is likely that a combination of genetic and environmental factors contribute to the formation of kidney and urinary tract abnormalities.
The genetic factors involved in most cases of CAKUT are unknown. Syndromic CAKUT is caused by changes in the genes associated with the particular syndrome. Variations in these same genes can also underlie some cases of isolated CAKUT. The genes most commonly associated with isolated CAKUT are PAX2, which is also associated with renal coloboma syndrome, and HNF1B, which is involved in 17q12 deletion syndrome and RCAD syndrome. These two genes play critical roles in the formation of the kidneys, urinary tract, and other tissues and organs during embryonic development. Certain mutations in these genes are thought to disrupt development of the kidneys or other parts of the urinary tract before birth, leading to CAKUT. Mutations in many other genes involved in development of the urinary system have also been associated with isolated or syndromic CAKUT.
Research shows that the same genetic mutation can lead to different kidney or urinary tract abnormalities, even among members of the same family. It is likely that additional changes in other genes help determine how the condition develops and how severe it is. In addition, environmental factors may influence development of CAKUT. The risk of CAKUT is higher in babies whose mothers had diabetes; took certain medications that are harmful to the kidneys, such as some anti-seizure drugs; or lacked certain vitamins and minerals, such as folate and iron, during pregnancy.
Inheritance
Inheritance of CAKUT is complex and not completely understood. About 10 to 20 percent of cases are thought to occur in families. When inherited, CAKUT most commonly follows an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause an abnormality. However, some people who have the altered gene never develop CAKUT, a situation known as reduced penetrance.
Less commonly, CAKUT follows an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not have signs or symptoms of the condition.
In many cases, the inheritance pattern is unknown or the condition is not inherited. In some of these cases, a new (de novo) mutation in the gene that occurs during the formation of reproductive cells (eggs or sperm) in an affected individual's parent or in early embryonic development may underlie the urinary system abnormality. These cases occur in people with no history of the disorder in their family.
Other Names for This Condition
- CAKUT
Additional Information & Resources
Genetic Testing Information
Patient Support and Advocacy Resources
Clinical Trials
Catalog of Genes and Diseases from OMIM
Scientific Articles on PubMed
References
- Capone VP, Morello W, Taroni F, Montini G. Genetics of Congenital Anomalies of the Kidney and Urinary Tract: The Current State of Play. Int J Mol Sci. 2017 Apr 11;18(4):796. doi: 10.3390/ijms18040796. Citation on PubMed or Free article on PubMed Central
- Hwang DY, Dworschak GC, Kohl S, Saisawat P, Vivante A, Hilger AC, Reutter HM, Soliman NA, Bogdanovic R, Kehinde EO, Tasic V, Hildebrandt F. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 2014 Jun;85(6):1429-33. doi: 10.1038/ki.2013.508. Epub 2014 Jan 15. Citation on PubMed or Free article on PubMed Central
- Nicolaou N, Renkema KY, Bongers EM, Giles RH, Knoers NV. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat Rev Nephrol. 2015 Dec;11(12):720-31. doi: 10.1038/nrneph.2015.140. Epub 2015 Aug 18. Citation on PubMed
- Sanna-Cherchi S, Westland R, Ghiggeri GM, Gharavi AG. Genetic basis of human congenital anomalies of the kidney and urinary tract. J Clin Invest. 2018 Jan 2;128(1):4-15. doi: 10.1172/JCI95300. Epub 2018 Jan 2. Citation on PubMed or Free article on PubMed Central
- Vivante A, Kohl S, Hwang DY, Dworschak GC, Hildebrandt F. Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Pediatr Nephrol. 2014 Apr;29(4):695-704. doi: 10.1007/s00467-013-2684-4. Epub 2014 Jan 8. Citation on PubMed or Free article on PubMed Central
- Weber S, Moriniere V, Knuppel T, Charbit M, Dusek J, Ghiggeri GM, Jankauskiene A, Mir S, Montini G, Peco-Antic A, Wuhl E, Zurowska AM, Mehls O, Antignac C, Schaefer F, Salomon R. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol. 2006 Oct;17(10):2864-70. doi: 10.1681/ASN.2006030277. Epub 2006 Sep 13. Citation on PubMed
The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.