Skip navigation

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

URL of this page:

TTN gene


Normal Function

The TTN gene provides instructions for making a very large protein called titin. This protein plays an important role in skeletal muscles, which the body uses for movement, and in heart (cardiac) muscle. Slightly different versions (called isoforms) of titin are made from the TTN gene in different muscles.

Within muscle cells, titin is an essential component of structures called sarcomeres. Sarcomeres are the basic units of muscle tensing (contraction); they are made of proteins that generate the mechanical force needed for muscles to contract. Titin has several functions within sarcomeres. One of the protein's main jobs is to provide structure, flexibility, and stability to these cell structures. Titin interacts with other muscle proteins, including actin and myosin, to keep the components of sarcomeres in place as muscles contract and relax. Titin also contains a spring-like region that allows muscles to stretch. Additionally, researchers have found that titin plays a role in chemical signaling and in assembling new sarcomeres.

Health Conditions Related to Genetic Changes

Centronuclear myopathy

Several variants (also known as mutations) in the TTN gene have been found to cause centronuclear myopathy, a condition that is characterized by muscle weakness (myopathy) in the skeletal muscles. Most of these variants alter the way the gene's instructions are used to produce titin, resulting in production of an abnormal protein with reduced or altered activity in muscle cells. Other variants prevent the production of titin protein. It is unclear how TTN gene variants cause centronuclear myopathy, but it is likely that a shortage of normal titin protein leads to dysfunction of the sarcomere. Abnormal sarcomeres prevent muscle cells from contracting and relaxing normally, resulting in the muscle weakness that is characteristic of centronuclear myopathy.

More About This Health Condition

Early-onset myopathy with fatal cardiomyopathy

Variants in the TTN gene have been identified in people with early-onset myopathy with fatal cardiomyopathy (EOMFC), an inherited disease that affects both skeletal and cardiac muscle. These genetic changes occur near the end of the TTN gene and lead to the production of an abnormally short version of the titin protein. The defective protein disrupts the function of sarcomeres, preventing skeletal and cardiac muscle from developing and working normally. These muscle abnormalities underlie the characteristic features of EOMFC, including skeletal muscle weakness and a form of heart disease called dilated cardiomyopathy.

More About This Health Condition

Familial dilated cardiomyopathy

Many TTN gene variants have been found to cause familial dilated cardiomyopathy, a condition that weakens and enlarges the heart, preventing it from pumping blood efficiently. Signs and symptoms of familial dilated cardiomyopathy typically begin in mid-adulthood and result in heart failure. TTN gene variants account for approximately one-quarter of all cases of familial dilated cardiomyopathy. These variants result in the production of an abnormal titin protein, particularly isoforms that are found in cardiac muscle. It is unclear how the altered protein causes familial dilated cardiomyopathy, but it likely impairs sarcomere function and disrupts chemical signaling. Changes in sarcomere function reduce the heart's ability to contract, weakening cardiac muscle and leading to the signs and symptoms of familial dilated cardiomyopathy.

More About This Health Condition

Hereditary myopathy with early respiratory failure

Several variants in the TTN gene have been found to cause hereditary myopathy with early respiratory failure (HMERF), an inherited disease that affects muscles used for movement (skeletal muscles) and muscles that are needed for breathing (respiratory muscles). These variants change single DNA building blocks (nucleotides) in a region of the TTN gene called exon 344. These changes alter a region of the titin protein called the FN3 119 domain and are thought to impair the folding of the titin protein into its normal 3-dimensional shape. Researchers are studying how abnormally folded titin contributes to the muscle damage underlying the signs and symptoms of HMERF. It is unclear why these effects are usually limited to certain skeletal muscles and respiratory muscles, and do not involve cardiac muscle.

More About This Health Condition

Limb-girdle muscular dystrophy

A small number of TTN gene variants have been found to cause limb-girdle muscular dystrophy type 2J (LGMD2J). Limb-girdle muscular dystrophy is a group of related disorders characterized by weakness and wasting of skeletal muscles, particularly in the shoulders, hips, and limbs. LGMD2J is a type of limb-girdle muscular dystrophy that has been identified primarily in the Finnish population. The genetic change found in this population deletes several amino acids and replaces them with other amino acids at the end of the titin protein. This complex variant, known as FINmaj, causes LGMD2J when it occurs in both copies of the TTN gene. The FINmaj variant may disrupt titin's interactions with other proteins that are needed to maintain muscle fibers. Loss of muscle fibers causes muscles to weaken and waste away over time, resulting in the signs and symptoms of limb-girdle muscular dystrophy.

More About This Health Condition

Tibial muscular dystrophy

Several variants in the TTN gene have been identified in people with tibial muscular dystrophy, a condition that primarily affects the muscles at the front of the lower leg. The FINmaj variant (described above) has been found to cause tibial muscular dystrophy in all affected people of Finnish descent. Other TTN gene variants cause tibial muscular dystrophy in non-Finnish European populations. This condition is caused by variants that occur in one copy of the TTN gene.

Researchers predict that the TTN gene variants responsible for tibial muscular dystrophy, including FINmaj, alter the ability of the titin protein to interact with other proteins within sarcomeres. These alterations likely impair muscle fiber maintenance or muscle contraction, causing muscles to weaken and waste away over time. It is unclear why the resulting weakness is usually limited to muscles in the lower legs in tibial muscular dystrophy.

Researchers are working to determine why some conditions resulting from TTN gene variants predominantly affect cardiac muscle, some predominantly affect skeletal muscle, and some affect both. They suspect that these differences may be related to the location of variants in the TTN gene and how they affect the many versions of titin that are produced in different muscles.

More About This Health Condition

Arrhythmogenic right ventricular cardiomyopathy

MedlinePlus Genetics provides information about Arrhythmogenic right ventricular cardiomyopathy

More About This Health Condition

Familial hypertrophic cardiomyopathy

MedlinePlus Genetics provides information about Familial hypertrophic cardiomyopathy

More About This Health Condition

Other disorders

TTN gene variants can cause muscle problems that begin before or soon after birth. Scientists suggest that early-onset forms of titin-related muscle disorders be grouped as congenital titinopathy. Often, fetuses with this condition move less than normal in the uterus. Affected babies may have low muscle tone (hypotonia) or joint deformities that limit their ability to move (contractures). Babies and children with congenital titinopathy can have muscle weakness in the neck, arms, or legs which usually worsens slowly, and they often learn to walk later than their peers. Abnormal side-to-side curvature of the spine (scoliosis) and difficulty breathing also commonly occur, and they can worsen rapidly. Some individuals with congenital titinopathy have heart problems. It is not clear how TTN gene variants affect the titin protein and cause congenital titinopathy. Researchers suspect that the version (isoform) of the titin protein affected by the gene variant may help determine the set of features in affected individuals.

Other Names for This Gene

  • CMH9
  • CMPD4
  • LGMD2J
  • MYLK5
  • TMD

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

Scientific Articles on PubMed

Catalog of Genes and Diseases from OMIM

Gene and Variant Databases


  • Carmignac V, Salih MA, Quijano-Roy S, Marchand S, Al Rayess MM, Mukhtar MM, Urtizberea JA, Labeit S, Guicheney P, Leturcq F, Gautel M, Fardeau M, Campbell KP, Richard I, Estournet B, Ferreiro A. C-terminal titin deletions cause a novel early-onset myopathy with fatal cardiomyopathy. Ann Neurol. 2007 Apr;61(4):340-51. doi: 10.1002/ana.21089. Erratum In: Ann Neurol. 2012 May;71(5):728. Citation on PubMed
  • Chauveau C, Rowell J, Ferreiro A. A rising titan: TTN review and mutation update. Hum Mutat. 2014 Sep;35(9):1046-59. doi: 10.1002/humu.22611. Epub 2014 Jul 21. Citation on PubMed
  • Fukuzawa A, Lange S, Holt M, Vihola A, Carmignac V, Ferreiro A, Udd B, Gautel M. Interactions with titin and myomesin target obscurin and obscurin-like 1 to the M-band: implications for hereditary myopathies. J Cell Sci. 2008 Jun 1;121(11):1841-51. doi: 10.1242/jcs.028019. Epub 2008 May 13. Citation on PubMed
  • Gerull B, Gramlich M, Atherton J, McNabb M, Trombitas K, Sasse-Klaassen S, Seidman JG, Seidman C, Granzier H, Labeit S, Frenneaux M, Thierfelder L. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet. 2002 Feb;30(2):201-4. doi: 10.1038/ng815. Epub 2002 Jan 14. Citation on PubMed
  • Gerull B. The Rapidly Evolving Role of Titin in Cardiac Physiology and Cardiomyopathy. Can J Cardiol. 2015 Nov;31(11):1351-9. doi: 10.1016/j.cjca.2015.08.016. Epub 2015 Aug 28. Citation on PubMed
  • Hackman JP, Vihola AK, Udd AB. The role of titin in muscular disorders. Ann Med. 2003;35(6):434-41. doi: 10.1080/07853890310012797. Citation on PubMed
  • Hackman P, Marchand S, Sarparanta J, Vihola A, Penisson-Besnier I, Eymard B, Pardal-Fernandez JM, Hammouda el-H, Richard I, Illa I, Udd B. Truncating mutations in C-terminal titin may cause more severe tibial muscular dystrophy (TMD). Neuromuscul Disord. 2008 Dec;18(12):922-8. doi: 10.1016/j.nmd.2008.07.010. Epub 2008 Oct 22. Citation on PubMed
  • Hackman P, Vihola A, Haravuori H, Marchand S, Sarparanta J, De Seze J, Labeit S, Witt C, Peltonen L, Richard I, Udd B. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet. 2002 Sep;71(3):492-500. doi: 10.1086/342380. Epub 2002 Jul 26. Citation on PubMed or Free article on PubMed Central
  • Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, Conner L, DePalma SR, McDonough B, Sparks E, Teodorescu DL, Cirino AL, Banner NR, Pennell DJ, Graw S, Merlo M, Di Lenarda A, Sinagra G, Bos JM, Ackerman MJ, Mitchell RN, Murry CE, Lakdawala NK, Ho CY, Barton PJ, Cook SA, Mestroni L, Seidman JG, Seidman CE. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012 Feb 16;366(7):619-28. doi: 10.1056/NEJMoa1110186. Citation on PubMed or Free article on PubMed Central
  • Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B, Gunnarsson LG, Hughes SM, Marchand S, Sejersen T, Richard I, Edstrom L, Ehler E, Udd B, Gautel M. The kinase domain of titin controls muscle gene expression and protein turnover. Science. 2005 Jun 10;308(5728):1599-603. doi: 10.1126/science.1110463. Epub 2005 Mar 31. Citation on PubMed
  • Linke WA. Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc Res. 2008 Mar 1;77(4):637-48. doi: 10.1016/j.cardiores.2007.03.029. Citation on PubMed
  • Norton N, Li D, Rampersaud E, Morales A, Martin ER, Zuchner S, Guo S, Gonzalez M, Hedges DJ, Robertson PD, Krumm N, Nickerson DA, Hershberger RE; National Heart, Lung, and Blood Institute GO Exome Sequencing Project and the Exome Sequencing Project Family Studies Project Team. Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN truncating variants to dilated cardiomyopathy. Circ Cardiovasc Genet. 2013 Apr;6(2):144-53. doi: 10.1161/CIRCGENETICS.111.000062. Epub 2013 Feb 15. Citation on PubMed or Free article on PubMed Central
  • Palmio J, Evila A, Chapon F, Tasca G, Xiang F, Bradvik B, Eymard B, Echaniz-Laguna A, Laporte J, Karppa M, Mahjneh I, Quinlivan R, Laforet P, Damian M, Berardo A, Taratuto AL, Bueri JA, Tommiska J, Raivio T, Tuerk M, Golitz P, Chevessier F, Sewry C, Norwood F, Hedberg C, Schroder R, Edstrom L, Oldfors A, Hackman P, Udd B. Hereditary myopathy with early respiratory failure: occurrence in various populations. J Neurol Neurosurg Psychiatry. 2014 Mar;85(3):345-53. doi: 10.1136/jnnp-2013-304965. Epub 2013 Apr 19. Citation on PubMed
  • Penisson-Besnier I, Hackman P, Suominen T, Sarparanta J, Huovinen S, Richard-Cremieux I, Udd B. Myopathies caused by homozygous titin mutations: limb-girdle muscular dystrophy 2J and variations of phenotype. J Neurol Neurosurg Psychiatry. 2010 Nov;81(11):1200-2. doi: 10.1136/jnnp.2009.178434. Epub 2010 Jun 22. Citation on PubMed
  • Savarese M, Sarparanta J, Vihola A, Udd B, Hackman P. Increasing Role of Titin Mutations in Neuromuscular Disorders. J Neuromuscul Dis. 2016 Aug 30;3(3):293-308. doi: 10.3233/JND-160158. Citation on PubMed or Free article on PubMed Central
  • Udd B, Vihola A, Sarparanta J, Richard I, Hackman P. Titinopathies and extension of the M-line mutation phenotype beyond distal myopathy and LGMD2J. Neurology. 2005 Feb 22;64(4):636-42. doi: 10.1212/01.WNL.0000151853.50144.82. Citation on PubMed
  • Udd B. Distal myopathies. Handb Clin Neurol. 2007;86:215-41. doi: 10.1016/S0072-9752(07)86011-8. No abstract available. Citation on PubMed

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.