Skip navigation

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

URL of this page:

TGFB3 gene

transforming growth factor beta 3

Normal Function

The TGFB3 gene provides instructions for producing a protein called transforming growth factor beta-3 (TGFβ-3). This protein is found throughout the body and is required for development before birth and throughout life. To carry out its functions, TGFβ-3 attaches (binds) to receptor proteins on the surface of cells. This binding triggers the transmission of signals within the cell, controlling various cellular activities. As part of a signaling pathway, called the TGF-β pathway, the TGFβ-3 protein helps control the growth and division (proliferation) of cells, the process by which cells mature to carry out specific functions (differentiation), cell movement (motility), and controlled cell death (apoptosis). Because the TGFβ-3 protein keeps cells from growing and dividing too rapidly or in an uncontrolled way, it can suppress the formation of tumors.

The TGFβ-3 protein is especially abundant in tissues that develop into the muscles used for movement (skeletal muscles), and plays a key role in their development. The protein is also involved in the formation of blood vessels, regulation of bone growth, wound healing, and immune system function.

Health Conditions Related to Genetic Changes

Loeys-Dietz syndrome

At least 11 mutations in the TGFB3 gene have been found to cause Loeys-Dietz syndrome type V. This disorder affects connective tissue, which gives structure and support to blood vessels, the skeleton, and many other parts of the body. Loeys-Dietz syndrome type V is characterized by blood vessel abnormalities, heart defects, and skeletal deformities. The TGFB3 gene mutations that cause this condition lead to the production of a TGFβ-3 protein with little or no function. As a result, the protein cannot bind to its receptors. Although the TGFβ-3 protein and its receptors are not bound, TGF-β pathway signaling occurs at an even greater intensity than normal. Researchers speculate that the activity of other proteins in this signaling pathway is increased to compensate for the reduction in TGFβ-3 activity; however, the exact mechanism responsible for the increase in signaling is unclear. The overactive signaling pathway disrupts development of connective tissue and various body systems and leads to the signs and symptoms of Loeys-Dietz syndrome type V.

More About This Health Condition

Arrhythmogenic right ventricular cardiomyopathy

MedlinePlus Genetics provides information about Arrhythmogenic right ventricular cardiomyopathy

More About This Health Condition

Other Names for This Gene

  • RNHF
  • TGF beta 3
  • TGF-beta3

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

Scientific Articles on PubMed

Catalog of Genes and Diseases from OMIM

Gene and Variant Databases


  • Bertoli-Avella AM, Gillis E, Morisaki H, Verhagen JMA, de Graaf BM, van de Beek G, Gallo E, Kruithof BPT, Venselaar H, Myers LA, Laga S, Doyle AJ, Oswald G, van Cappellen GWA, Yamanaka I, van der Helm RM, Beverloo B, de Klein A, Pardo L, Lammens M, Evers C, Devriendt K, Dumoulein M, Timmermans J, Bruggenwirth HT, Verheijen F, Rodrigus I, Baynam G, Kempers M, Saenen J, Van Craenenbroeck EM, Minatoya K, Matsukawa R, Tsukube T, Kubo N, Hofstra R, Goumans MJ, Bekkers JA, Roos-Hesselink JW, van de Laar IMBH, Dietz HC, Van Laer L, Morisaki T, Wessels MW, Loeys BL. Mutations in a TGF-beta ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J Am Coll Cardiol. 2015 Apr 7;65(13):1324-1336. doi: 10.1016/j.jacc.2015.01.040. Citation on PubMed or Free article on PubMed Central
  • Matyas G, Naef P, Tollens M, Oexle K. De novo mutation of the latency-associated peptide domain of TGFB3 in a patient with overgrowth and Loeys-Dietz syndrome features. Am J Med Genet A. 2014 Aug;164A(8):2141-3. doi: 10.1002/ajmg.a.36593. Epub 2014 May 5. No abstract available. Citation on PubMed
  • Rienhoff HY Jr, Yeo CY, Morissette R, Khrebtukova I, Melnick J, Luo S, Leng N, Kim YJ, Schroth G, Westwick J, Vogel H, McDonnell N, Hall JG, Whitman M. A mutation in TGFB3 associated with a syndrome of low muscle mass, growth retardation, distal arthrogryposis and clinical features overlapping with Marfan and Loeys-Dietz syndrome. Am J Med Genet A. 2013 Aug;161A(8):2040-6. doi: 10.1002/ajmg.a.36056. Epub 2013 Jul 3. Citation on PubMed or Free article on PubMed Central

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.