URL of this page: https://medlineplus.gov/genetics/gene/mycn/

MYCN gene

MYCN proto-oncogene, bHLH transcription factor
From Genetics Home Reference. Learn more

Normal Function

The MYCN gene provides instructions for making a protein that plays an important role in the formation of tissues and organs during development before birth. Studies in animals suggest that this protein is necessary for normal development of the limbs, heart, kidneys, lungs, nervous system, and digestive system. The MYCN protein regulates the activity of other genes by attaching (binding) to specific regions of DNA and controlling the first step of protein production (transcription). On the basis of this action, this protein is called a transcription factor.

The MYCN gene belongs to a class of genes known as oncogenes. When mutated, oncogenes have the potential to cause normal cells to become cancerous. The MYCN gene is a member of the Myc family of oncogenes. These genes play important roles in regulating cell growth and division (proliferation) and the self-destruction of cells (apoptosis).

Health Conditions Related to Genetic Changes

Feingold syndrome

At least 36 mutations involving the MYCN gene have been found to cause Feingold syndrome type 1. This developmental disorder is characterized by abnormalities of the fingers and toes, particularly shortening of the second and fifth fingers (brachymesophalangy). Other common features include a blockage in part of the digestive system (gastrointestinal atresia), an unusually small head size (microcephaly) and learning disabilities. Most of these mutations lead to a premature stop signal in the instructions for making the protein. In some cases of Feingold syndrome type 1, the entire MYCN gene is deleted. These genetic changes prevent one copy of the gene in each cell from producing any functional MYCN protein. As a result, only half the normal amount of this protein is available to control the activity of specific genes during development. It is unclear how a reduced amount of the MYCN protein causes the varied features of Feingold syndrome type 1.

More About This Health Condition

Neuroblastoma

Some gene mutations are acquired during a person's lifetime and are present only in certain cells. These changes, which are not inherited, are called somatic mutations. Somatic mutations sometimes occur when DNA makes a copy of itself (replicates) in preparation for cell division. Errors in the replication process can result in one or more extra copies of a gene within a cell. The presence of extra copies of certain genes, known as gene amplification, can underlie the formation and growth of tumor cells. For example, amplification of the MYCN gene is found in about 25 percent of neuroblastomas. Neuroblastoma is a type of cancerous tumor that arises in developing nerve cells. The number of copies of the MYCN gene varies widely among these tumors but is typically between 50 and 100. Amplification of the MYCN gene is associated with a severe form of neuroblastoma. It is unknown how amplification of this gene contributes to the aggressiveness of neuroblastoma.

More About This Health Condition

Retinoblastoma

MedlinePlus Genetics provides information about Retinoblastoma

More About This Health Condition

Other Names for This Gene

  • bHLHe37
  • MYCN_HUMAN
  • MYCNOT
  • N-myc
  • N-myc proto-oncogene protein
  • neuroblastoma MYC oncogene
  • neuroblastoma-derived v-myc avian myelocytomatosis viral related oncogene
  • NMYC
  • oncogene NMYC
  • pp65/67
  • v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog
  • v-myc avian myelocytomatosis viral related oncogene, neuroblastoma derived
  • v-myc myelocytomatosis viral related oncogene, neuroblastoma derived
  • v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian)

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

Scientific Articles on PubMed

Research Resources

References

  • Albertson DG. Gene amplification in cancer. Trends Genet. 2006 Aug;22(8):447-55. Epub 2006 Jun 19. Review. Citation on PubMed
  • Ewens KG, Bhatti TR, Moran KA, Richards-Yutz J, Shields CL, Eagle RC, Ganguly A. Phosphorylation of pRb: mechanism for RB pathway inactivation in MYCN-amplified retinoblastoma. Cancer Med. 2017 Mar;6(3):619-630. doi: 10.1002/cam4.1010. Epub 2017 Feb 17. Citation on PubMed or Free article on PubMed Central
  • Jacobs JF, van Bokhoven H, van Leeuwen FN, Hulsbergen-van de Kaa CA, de Vries IJ, Adema GJ, Hoogerbrugge PM, de Brouwer AP. Regulation of MYCN expression in human neuroblastoma cells. BMC Cancer. 2009 Jul 18;9:239. doi: 10.1186/1471-2407-9-239. Citation on PubMed or Free article on PubMed Central
  • Marcelis CL, Hol FA, Graham GE, Rieu PN, Kellermayer R, Meijer RP, Lugtenberg D, Scheffer H, van Bokhoven H, Brunner HG, de Brouwer AP. Genotype-phenotype correlations in MYCN-related Feingold syndrome. Hum Mutat. 2008 Sep;29(9):1125-32. doi: 10.1002/humu.20750. Citation on PubMed
  • Marcelis CLM, de Brouwer APM. Feingold Syndrome 1. 2009 Jun 30 [updated 2019 Apr 4]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. GeneReviews┬« [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from http://www.ncbi.nlm.nih.gov/books/NBK7050/ Citation on PubMed
  • Mirzamohammadi F, Kozlova A, Papaioannou G, Paltrinieri E, Ayturk UM, Kobayashi T. Distinct molecular pathways mediate Mycn and Myc-regulated miR-17-92 microRNA action in Feingold syndrome mouse models. Nat Commun. 2018 Apr 10;9(1):1352. doi: 10.1038/s41467-018-03788-7. Citation on PubMed or Free article on PubMed Central
  • Schwab M, Alitalo K, Klempnauer KH, Varmus HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M, Trent J. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature. 1983 Sep 15-21;305(5931):245-8. Citation on PubMed
  • Soliman SE, Racher H, Zhang C, MacDonald H, Gallie BL. Genetics and Molecular Diagnostics in Retinoblastoma--An Update. Asia Pac J Ophthalmol (Phila). 2017 Mar-Apr;6(2):197-207. doi: 10.22608/APO.201711. Review. Citation on PubMed
  • Tang XX, Zhao H, Kung B, Kim DY, Hicks SL, Cohn SL, Cheung NK, Seeger RC, Evans AE, Ikegaki N. The MYCN enigma: significance of MYCN expression in neuroblastoma. Cancer Res. 2006 Mar 1;66(5):2826-33. Citation on PubMed
  • van Bokhoven H, Celli J, van Reeuwijk J, Rinne T, Glaudemans B, van Beusekom E, Rieu P, Newbury-Ecob RA, Chiang C, Brunner HG. MYCN haploinsufficiency is associated with reduced brain size and intestinal atresias in Feingold syndrome. Nat Genet. 2005 May;37(5):465-7. Epub 2005 Apr 10. Citation on PubMed
  • Van Roy N, De Preter K, Hoebeeck J, Van Maerken T, Pattyn F, Mestdagh P, Vermeulen J, Vandesompele J, Speleman F. The emerging molecular pathogenesis of neuroblastoma: implications for improved risk assessment and targeted therapy. Genome Med. 2009 Jul 27;1(7):74. doi: 10.1186/gm74. Citation on PubMed or Free article on PubMed Central
  • Vasudevan SA, Nuchtern JG, Shohet JM. Gene profiling of high risk neuroblastoma. World J Surg. 2005 Mar;29(3):317-24. Review. Citation on PubMed
From Genetics Home Reference

Genetics Home Reference has merged with MedlinePlus. Genetics Home Reference content now can be found in the "Genetics" section of MedlinePlus. Learn more

The resources on this site should not be used as a substitute for professional medical care or advice. Users with questions about a personal health condition should consult with a qualified healthcare professional.