Skip navigation

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

URL of this page:

SLC6A3 gene

solute carrier family 6 member 3

Normal Function

The SLC6A3 gene provides instructions for making a protein called the dopamine transporter or DAT. This protein is embedded in the membrane of certain nerve cells (neurons) in the brain, where it transports a molecule called dopamine into the cell. Dopamine is a chemical messenger (neurotransmitter) that relays signals from one neuron to another. Dopamine has many important functions, including playing complex roles in thought (cognition), motivation, behavior, and control of movement.

To transmit signals, dopamine is released into the space between neurons (the synaptic cleft), where it attaches (binds) to receptors on the surface of neighboring neurons. The dopamine transporter brings dopamine from the synaptic cleft back into neurons for reuse. The activity of the transporter determines how much dopamine is present in the synaptic cleft and for how long. This activity makes the transporter a major controller of dopamine signaling in the brain.

Health Conditions Related to Genetic Changes

Dopamine transporter deficiency syndrome

At least 19 mutations in the SLC6A3 gene have been identified in people with dopamine transporter deficiency syndrome, a rare movement disorder that worsens over time. Its signs and symptoms usually begin in infancy but can appear in childhood or later. Some of the mutations change single protein building blocks (amino acids) in the dopamine transporter protein. Others lead to the production of an abnormally short protein or prevent cells from producing any functional protein. All of these mutations impair the function of the dopamine transporter. Because the impaired transporter cannot carry dopamine out of the synaptic cleft and back into neurons, dopamine builds up in the spaces around neurons. The excess dopamine alters signaling between neurons and may suppress (inhibit) pathways that normally trigger the production of more dopamine. Although dopamine has a critical role in controlling movement, it is unclear how altered dopamine signaling causes the specific movement abnormalities found in people with dopamine transporter deficiency syndrome.

Studies suggest that the age at which signs and symptoms appear is related to how severely the function of the dopamine transporter is affected. Affected individuals who develop movement problems starting in infancy most often have transporter activity that is less than 5 percent of normal. Those whose movement problems appear in childhood or later tend to have somewhat higher levels of transporter activity, although they are still lower than normal. Researchers speculate that higher levels of transporter activity may delay the onset of the disease in these individuals.

More About This Health Condition

Alcohol use disorder

MedlinePlus Genetics provides information about Alcohol use disorder

More About This Health Condition

Other disorders

Variations (polymorphisms) in the SLC6A3 gene have been studied as possible risk factors for attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). ADHD, which typically begins in childhood, is characterized by overactivity, impulsive behavior, and difficulty paying attention. ASD represents a group of developmental conditions that affect communication and social interaction. Changes in dopamine signaling appear to play an important role in both ADHD and ASD. However, it is unclear how variations in the SLC6A3 gene may be involved. Multiple genetic and environmental factors, most of which remain unknown, likely determine the risk of developing these complex conditions.

Other Names for This Gene

  • DA transporter
  • DAT
  • DAT1
  • dopamine transporter 1
  • sodium-dependent dopamine transporter
  • solute carrier family 6 (neurotransmitter transporter), member 3
  • solute carrier family 6 (neurotransmitter transporter, dopamine), member 3

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

Scientific Articles on PubMed

Gene and Variant Databases


  • Bowton E, Saunders C, Reddy IA, Campbell NG, Hamilton PJ, Henry LK, Coon H, Sakrikar D, Veenstra-VanderWeele JM, Blakely RD, Sutcliffe J, Matthies HJ, Erreger K, Galli A. SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking. Transl Psychiatry. 2014 Oct 14;4(10):e464. doi: 10.1038/tp.2014.90. Citation on PubMed or Free article on PubMed Central
  • Chen N, Reith ME. Structure and function of the dopamine transporter. Eur J Pharmacol. 2000 Sep 29;405(1-3):329-39. doi: 10.1016/s0014-2999(00)00563-x. Citation on PubMed
  • Faraone SV, Mick E. Molecular genetics of attention deficit hyperactivity disorder. Psychiatr Clin North Am. 2010 Mar;33(1):159-80. doi: 10.1016/j.psc.2009.12.004. Citation on PubMed or Free article on PubMed Central
  • Hamilton PJ, Campbell NG, Sharma S, Erreger K, Herborg Hansen F, Saunders C, Belovich AN; NIH ARRA Autism Sequencing Consortium; Sahai MA, Cook EH, Gether U, McHaourab HS, Matthies HJ, Sutcliffe JS, Galli A. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol Psychiatry. 2013 Dec;18(12):1315-23. doi: 10.1038/mp.2013.102. Epub 2013 Aug 27. Citation on PubMed or Free article on PubMed Central
  • Hansen FH, Skjorringe T, Yasmeen S, Arends NV, Sahai MA, Erreger K, Andreassen TF, Holy M, Hamilton PJ, Neergheen V, Karlsborg M, Newman AH, Pope S, Heales SJ, Friberg L, Law I, Pinborg LH, Sitte HH, Loland C, Shi L, Weinstein H, Galli A, Hjermind LE, Moller LB, Gether U. Missense dopamine transporter mutations associate with adult parkinsonism and ADHD. J Clin Invest. 2014 Jul;124(7):3107-20. doi: 10.1172/JCI73778. Epub 2014 Jun 9. Citation on PubMed or Free article on PubMed Central
  • Kurian MA, Li Y, Zhen J, Meyer E, Hai N, Christen HJ, Hoffmann GF, Jardine P, von Moers A, Mordekar SR, O'Callaghan F, Wassmer E, Wraige E, Dietrich C, Lewis T, Hyland K, Heales S Jr, Sanger T, Gissen P, Assmann BE, Reith ME, Maher ER. Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study. Lancet Neurol. 2011 Jan;10(1):54-62. doi: 10.1016/S1474-4422(10)70269-6. Epub 2010 Nov 25. Citation on PubMed or Free article on PubMed Central
  • Kurian MA, Zhen J, Cheng SY, Li Y, Mordekar SR, Jardine P, Morgan NV, Meyer E, Tee L, Pasha S, Wassmer E, Heales SJ, Gissen P, Reith ME, Maher ER. Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J Clin Invest. 2009 Jun;119(6):1595-603. doi: 10.1172/JCI39060. Epub 2009 May 26. Citation on PubMed or Free article on PubMed Central
  • Li D, Sham PC, Owen MJ, He L. Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet. 2006 Jul 15;15(14):2276-84. doi: 10.1093/hmg/ddl152. Epub 2006 Jun 14. Citation on PubMed
  • Ng J, Zhen J, Meyer E, Erreger K, Li Y, Kakar N, Ahmad J, Thiele H, Kubisch C, Rider NL, Morton DH, Strauss KA, Puffenberger EG, D'Agnano D, Anikster Y, Carducci C, Hyland K, Rotstein M, Leuzzi V, Borck G, Reith ME, Kurian MA. Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood. Brain. 2014 Apr;137(Pt 4):1107-19. doi: 10.1093/brain/awu022. Epub 2014 Mar 10. Citation on PubMed or Free article on PubMed Central
  • Yang B, Chan RC, Jing J, Li T, Sham P, Chen RY. A meta-analysis of association studies between the 10-repeat allele of a VNTR polymorphism in the 3'-UTR of dopamine transporter gene and attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2007 Jun 5;144B(4):541-50. doi: 10.1002/ajmg.b.30453. Citation on PubMed

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.