Frequency
Waldenström macroglobulinemia affects an estimated 3 per million people each year in the United States. Approximately 1,000 to 1,500 new cases of the condition are diagnosed each year in this country, and white people are more likely to develop Waldenström macroglobulinemia than African Americans. For unknown reasons, the condition occurs twice as often in men than women.
Causes
It is not clear what causes Waldenström macroglobulinemia, though it is likely to result from a combination of genetic changes. The most common known genetic change associated with this condition is a variant (also called mutation) in the MYD88 gene, which is found in more than 90 percent of affected individuals. Another gene commonly associated with Waldenström macroglobulinemia, CXCR4, is altered in approximately 30 percent of affected individuals (most of whom also have the MYD88 gene variant).
The proteins produced from the MYD88 and CXCR4 genes are both involved in signaling within cells. The MyD88 protein relays signals that help prevent the self-destruction (apoptosis) of cells, thus aiding in cell survival. The CXCR4 protein stimulates signaling pathways inside the cell that help regulate cell growth and division (proliferation) and cell survival. Variants in these genes lead to production of proteins that are constantly turned on (overactive). Excessive signaling through these overactive proteins allows survival and proliferation of abnormal cells that should undergo apoptosis, which likely contributes to the accumulation of lymphoplasmacytic cells in Waldenström macroglobulinemia.
Other genetic changes believed to be involved in Waldenström macroglobulinemia have not yet been identified. Studies have found that certain regions of DNA are deleted or added in some people with the condition; however, researchers are unsure which genes in these regions are important for development of the condition. The variants that cause Waldenström macroglobulinemia are acquired during a person's lifetime and are present only in the abnormal blood cells.
Inheritance
Waldenström macroglobulinemia is not inherited, and most affected people have no history of the disorder in their family. The condition usually arises from genetic changes in blood cells that are acquired during a person's lifetime (somatic variants), which are not inherited.
Some families seem to have a predisposition to the condition. Approximately 20 percent of people with Waldenström macroglobulinemia have a family member with the condition or another disorder involving abnormal B cells.
Other Names for This Condition
- Macroglobulinemia of Waldenstrom
- Waldenstrom macroglobulinemia
- Waldenstrom's macroglobulinemia
- WM
Additional Information & Resources
Genetic Testing Information
Genetic and Rare Diseases Information Center
Patient Support and Advocacy Resources
Clinical Trials
Catalog of Genes and Diseases from OMIM
Scientific Articles on PubMed
References
- Cao Y, Hunter ZR, Liu X, Xu L, Yang G, Chen J, Patterson CJ, Tsakmaklis N, Kanan S, Rodig S, Castillo JJ, Treon SP. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom's Macroglobulinemia. Leukemia. 2015 Jan;29(1):169-76. doi: 10.1038/leu.2014.187. Epub 2014 Jun 10. Citation on PubMed
- Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Manning RJ, Tripsas C, Patterson CJ, Sheehy P, Treon SP. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014 Mar 13;123(11):1637-46. doi: 10.1182/blood-2013-09-525808. Epub 2013 Dec 23. Citation on PubMed
- Monge J, Braggio E, Ansell SM. Genetic factors and pathogenesis of Waldenstrom's macroglobulinemia. Curr Oncol Rep. 2013 Oct;15(5):450-6. doi: 10.1007/s11912-013-0331-7. Citation on PubMed or Free article on PubMed Central
- Poulain S, Roumier C, Galiegue-Zouitina S, Daudignon A, Herbaux C, Aiijou R, Lainelle A, Broucqsault N, Bertrand E, Manier S, Renneville A, Soenen V, Tricot S, Roche-Lestienne C, Duthilleul P, Preudhomme C, Quesnel B, Morel P, Leleu X. Genome wide SNP array identified multiple mechanisms of genetic changes in Waldenstrom macroglobulinemia. Am J Hematol. 2013 Nov;88(11):948-54. doi: 10.1002/ajh.23545. Epub 2013 Aug 30. Citation on PubMed
- Sahin I, Leblebjian H, Treon SP, Ghobrial IM. Waldenstrom macroglobulinemia: from biology to treatment. Expert Rev Hematol. 2014 Feb;7(1):157-68. doi: 10.1586/17474086.2014.871494. Epub 2014 Jan 3. Citation on PubMed
- Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, Arcaini L, Pinkus GS, Rodig SJ, Sohani AR, Harris NL, Laramie JM, Skifter DA, Lincoln SE, Hunter ZR. MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia. N Engl J Med. 2012 Aug 30;367(9):826-33. doi: 10.1056/NEJMoa1200710. Citation on PubMed
- Yang G, Zhou Y, Liu X, Xu L, Cao Y, Manning RJ, Patterson CJ, Buhrlage SJ, Gray N, Tai YT, Anderson KC, Hunter ZR, Treon SP. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia. Blood. 2013 Aug 15;122(7):1222-32. doi: 10.1182/blood-2012-12-475111. Epub 2013 Jul 8. Citation on PubMed
The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.