Description
Pfeiffer syndrome is a genetic disorder characterized by the premature fusion of certain skull bones (craniosynostosis). This early fusion prevents the skull from growing normally and affects the shape of the head and face. Pfeiffer syndrome also affects bones in the hands and feet.
Many of the characteristic facial features of Pfeiffer syndrome result from premature fusion of the skull bones. Abnormal growth of these bones leads to bulging and wide-set eyes, a high forehead, an underdeveloped upper jaw, and a beaked nose. More than half of all children with Pfeiffer syndrome have hearing loss; dental problems are also common.
In people with Pfeiffer syndrome, the thumbs and first (big) toes are wide and bend away from the other digits. Unusually short fingers and toes (brachydactyly) are also common, and there may be some webbing or fusion between the digits (syndactyly).
Pfeiffer syndrome is divided into three subtypes. Type 1, also known as classic Pfeiffer syndrome, has symptoms as described above. Most individuals with type 1 Pfeiffer syndrome have normal intelligence and a normal life span. Types 2 and 3 are more severe forms of Pfeiffer syndrome that often involve problems with the nervous system. The premature fusion of skull bones can limit brain growth, leading to delayed development and other neurological problems. In addition, individuals with type 2 or 3 can have fusion of the bones (ankylosis) in the elbow or other joints, limiting mobility, and abnormalities of the face and airways, which can cause life-threatening breathing problems. Type 2 is distinguished from type 3 by the presence of a cloverleaf-shaped head, which is caused by more extensive fusion of bones in the skull.
Frequency
Pfeiffer syndrome affects about 1 in 100,000 individuals.
Causes
Pfeiffer syndrome is most commonly caused by mutations in the FGFR2 gene. Mutations in the FGFR1 gene cause a small percentage of cases of type 1 Pfeiffer syndrome. Mutations in this gene have not been associated with type 2 or 3.
The FGFR1 and FGFR2 genes provide instructions for making proteins known as fibroblast growth factor receptors 1 and 2, respectively. Among their multiple functions, these proteins signal immature cells to become bone cells during embryonic development. A mutation in either the FGFR1 or FGFR2 gene alters the function of the respective protein, causing prolonged signaling, which can promote the premature fusion of skull bones and affect the development of bones in the hands and feet.
Inheritance
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.
Other Names for This Condition
- Acrocephalosyndactyly, type V
- ACS V
- ACS5
- Craniofacial-skeletal-dermatologic dysplasia
- Noack syndrome
Additional Information & Resources
Genetic Testing Information
Genetic and Rare Diseases Information Center
Patient Support and Advocacy Resources
Clinical Trials
Catalog of Genes and Diseases from OMIM
Scientific Articles on PubMed
References
- Chen L, Deng CX. Roles of FGF signaling in skeletal development and human genetic diseases. Front Biosci. 2005 May 1;10:1961-76. doi: 10.2741/1671. Citation on PubMed
- Chokdeemboon C, Mahatumarat C, Rojvachiranonda N, Tongkobpetch S, Suphapeetiporn K, Shotelersuk V. FGFR1 and FGFR2 mutations in Pfeiffer syndrome. J Craniofac Surg. 2013 Jan;24(1):150-2. doi: 10.1097/SCS.0b013e3182646454. Citation on PubMed
- Cornejo-Roldan LR, Roessler E, Muenke M. Analysis of the mutational spectrum of the FGFR2 gene in Pfeiffer syndrome. Hum Genet. 1999 May;104(5):425-31. doi: 10.1007/s004390050979. Citation on PubMed
- Greig AV, Wagner J, Warren SM, Grayson B, McCarthy JG. Pfeiffer syndrome: analysis of a clinical series and development of a classification system. J Craniofac Surg. 2013 Jan;24(1):204-15. doi: 10.1097/SCS.0b013e31826704be. Citation on PubMed
- Harb E, Kran B. Pfeiffer syndrome: systemic and ocular implications. Optometry. 2005 Jul;76(7):352-62. doi: 10.1016/j.optm.2005.05.002. Citation on PubMed
- Vogels A, Fryns JP. Pfeiffer syndrome. Orphanet J Rare Dis. 2006 Jun 1;1:19. doi: 10.1186/1750-1172-1-19. Citation on PubMed or Free article on PubMed Central
- Wilkie AO, Patey SJ, Kan SH, van den Ouweland AM, Hamel BC. FGFs, their receptors, and human limb malformations: clinical and molecular correlations. Am J Med Genet. 2002 Oct 15;112(3):266-78. doi: 10.1002/ajmg.10775. Citation on PubMed
The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.