Skip navigation

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

URL of this page: https://medlineplus.gov/genetics/understanding/traits/haircolor/

Is hair color determined by genetics?

Hair color is determined by the amount of a pigment called melanin in hair. An abundance of one type of melanin, called eumelanin, gives people black or brown hair. An abundance of another pigment, called pheomelanin, gives people red hair.

The type and amount of melanin determines hair color

Hair color

Type and amount of melanin

Black

Large amount of eumelanin

Brown

Moderate amount of eumelanin

Blond

Very little eumelanin

Red

Mostly pheomelanin with a little eumelanin

The type and amount of melanin in hair is determined by many genes, although little is known about most of them. The best-studied hair-color gene in humans is called MC1R. This gene provides instructions for making a protein called the melanocortin 1 receptor, which is involved in the pathway that produces melanin. The melanocortin 1 receptor controls which type of melanin is produced by melanocytes. When the receptor is turned on (activated), it triggers a series of chemical reactions inside melanocytes that stimulate these cells to make eumelanin. If the receptor is not activated or is blocked, melanocytes make pheomelanin instead of eumelanin. Many other genes also help to regulate this process. Most people have two functioning copies of the MC1R gene, one inherited from each parent. These individuals have black or brown hair, because of the high amount of eumelanin. It is estimated that more than 90 percent of people in the world have brown or black hair.

Some people have variations in one copy of the MC1R gene in each cell that causes the gene to be turned off (deactivated). This type of genetic change is described as loss-of-function. For these individuals, eumelanin production is lower, while pheomelanin production is higher, so they have strawberry blond, auburn, or red hair. In an even smaller percentage of people, both copies of the MC1R gene in each cell have loss-of-function changes, and the melanin-production pathway produces only the pheomelanin pigment. The hair of these individuals is almost always very red. Even when the melanin-production pathway is making eumelanin, changes in other genes can reduce the amount of eumelanin produced. These changes lead to blond hair.

Hair color ranges across a wide spectrum of hues, from flaxen blond to coal black. Many genes other than MC1R play a role in determining shades of hair color by controlling levels of eumelanin and pheomelanin. Some of these genes, including ASIP, DTNBP1, GPR143, HPS3, KITLG, MLPH, MYO5A, MYO7A, OCA2, SLC45A2, SLC24A5, TYRP1, TYR, ERCC6, GNAS, HERC2, IRF4, OBSCN, SLC24A4, TPCN2, and MITF, are involved in the production of melanin in hair. Some of these genes are associated with gene transcription (which is the first step in protein production), DNA repair, the transport of substances (such as calcium) across cell membranes, or the structure of hair follicles. Several of these genes contribute to eye and skin color, but the exact role they play in determining hair color is unknown.

Hair color may change over time. Particularly in people of European descent, light hair color may darken as individuals grow older. For example, blond-haired children often have darker hair by the time they are teenagers. Researchers speculate that certain hair-pigment proteins are activated as children grow older, perhaps in response to hormonal changes that occur near puberty. Almost everyone’s hair will begin to turn gray as they age, although when it happens and to what extent is variable. Gray hair is partly hereditary and may vary by ethnic origin; it is also somewhat dependent on external factors such as stress. Hair becomes gray when the hair follicle loses its ability to make melanin, but exactly why that occurs is not clear.

Scientific journal articles for further reading

Manga P, Loftus S. Genetics of Skin, Hair, and Eye Color in Human Pigmentation Disorders. Ann Hum Genet. 2025 Jul 3:e70003. doi: 10.1111/ahg.70003. Epub ahead of print. PMID: 40605698.

Morgan MD, Pairo-Castineira E, Rawlik K, Canela-Xandri O, Rees J, Sims D, Tenesa A, Jackson IJ. Genome-wide study of hair colour in UK Biobank explains most of the SNP heritability. Nat Commun. 2018 Dec 10;9(1):5271. doi: 10.1038/s41467-018-07691-z. PMID: 30531825. Free full-text available from PubMed Central: PMC6288091.

Pavan WJ, Sturm RA. The Genetics of Human Skin and Hair Pigmentation. Annu Rev Genomics Hum Genet. 2019 Aug 31;20:41-72. doi: 10.1146/annurev-genom-083118-015230. Epub 2019 May 17. PMID: 31100995.

Siewierska-Górska A, Sitek A, Żądzińska E, Bartosz G, Strapagiel D. Association of five SNPs with human hair colour in the Polish population. Homo. 2017 Mar;68(2):134-144. doi: 10.1016/j.jchb.2017.02.002. Epub 2017 Feb 4. PubMed: 28242083.