Skip navigation

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

URL of this page:

PNKD gene

PNKD metallo-beta-lactamase domain containing

Normal Function

Researchers have not determined the role of the PNKD gene (frequently called the MR1 gene) in the human body. This gene is highly active (expressed) in the brain, which suggests that it plays an important role in normal brain function. The protein produced from the PNKD gene may help control the release of chemicals called neurotransmitters, which allow nerve cells (neurons) to communicate with one another.

The PNKD protein is similar to another protein that helps break down a chemical called methylglyoxal. Methylglyoxal is found in alcoholic beverages, coffee, tea, and cola. Research has demonstrated that this chemical is toxic to nerve cells (neurons). The PNKD protein may perform a function similar to this protein.

Health Conditions Related to Genetic Changes

Familial paroxysmal nonkinesigenic dyskinesia

At least three mutations in the PNKD gene have been shown to cause familial paroxysmal nonkinesigenic dyskinesia, which is characterized by episodes of involuntary movement. The two most common mutations, each found in several affected families, replace the protein building block (amino acid) alanine with the amino acid valine in the PNKD protein. One of the mutations occurs at position 7 (written as Ala7Val or A7V), and the other mutation is at position 9 (written as Ala9Val or A9V). Research suggests that the PNKD gene mutations alter the structure of the PNKD protein and interfere with its ability to function. It is not known how mutations in the PNKD gene lead to the signs and symptoms of familial paroxysmal nonkinesigenic dyskinesia.

More About This Health Condition

Other Names for This Gene

  • brain protein 17
  • BRP17
  • DKFZp564N1362
  • DYT8
  • FKSG19
  • FPD1
  • KIAA1184
  • KIPP1184
  • MGC31943
  • MR-1
  • MR-1S
  • MR1
  • myofibrillogenesis regulator 1
  • paroxysmal nonkinesigenic dyskinesia
  • PDC
  • PKND1

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

Scientific Articles on PubMed

Catalog of Genes and Diseases from OMIM

Gene and Variant Databases


  • Bruno MK, Lee HY, Auburger GW, Friedman A, Nielsen JE, Lang AE, Bertini E, Van Bogaert P, Averyanov Y, Hallett M, Gwinn-Hardy K, Sorenson B, Pandolfo M, Kwiecinski H, Servidei S, Fu YH, Ptacek L. Genotype-phenotype correlation of paroxysmal nonkinesigenic dyskinesia. Neurology. 2007 May 22;68(21):1782-9. doi: 10.1212/01.wnl.0000262029.91552.e0. Citation on PubMed
  • Chen DH, Matsushita M, Rainier S, Meaney B, Tisch L, Feleke A, Wolff J, Lipe H, Fink J, Bird TD, Raskind WH. Presence of alanine-to-valine substitutions in myofibrillogenesis regulator 1 in paroxysmal nonkinesigenic dyskinesia: confirmation in 2 kindreds. Arch Neurol. 2005 Apr;62(4):597-600. doi: 10.1001/archneur.62.4.597. Citation on PubMed
  • Gardiner AR, Jaffer F, Dale RC, Labrum R, Erro R, Meyer E, Xiromerisiou G, Stamelou M, Walker M, Kullmann D, Warner T, Jarman P, Hanna M, Kurian MA, Bhatia KP, Houlden H. The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain. 2015 Dec;138(Pt 12):3567-80. doi: 10.1093/brain/awv310. Epub 2015 Nov 23. Citation on PubMed or Free article on PubMed Central
  • Lee HY, Xu Y, Huang Y, Ahn AH, Auburger GW, Pandolfo M, Kwiecinski H, Grimes DA, Lang AE, Nielsen JE, Averyanov Y, Servidei S, Friedman A, Van Bogaert P, Abramowicz MJ, Bruno MK, Sorensen BF, Tang L, Fu YH, Ptacek LJ. The gene for paroxysmal non-kinesigenic dyskinesia encodes an enzyme in a stress response pathway. Hum Mol Genet. 2004 Dec 15;13(24):3161-70. doi: 10.1093/hmg/ddh330. Epub 2004 Oct 20. Citation on PubMed
  • Rainier S, Thomas D, Tokarz D, Ming L, Bui M, Plein E, Zhao X, Lemons R, Albin R, Delaney C, Alvarado D, Fink JK. Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonic choreoathetosis. Arch Neurol. 2004 Jul;61(7):1025-9. doi: 10.1001/archneur.61.7.1025. Citation on PubMed
  • Shen Y, Ge WP, Li Y, Hirano A, Lee HY, Rohlmann A, Missler M, Tsien RW, Jan LY, Fu YH, Ptacek LJ. Protein mutated in paroxysmal dyskinesia interacts with the active zone protein RIM and suppresses synaptic vesicle exocytosis. Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):2935-41. doi: 10.1073/pnas.1501364112. Epub 2015 Feb 17. Citation on PubMed or Free article on PubMed Central
  • Shen Y, Lee HY, Rawson J, Ojha S, Babbitt P, Fu YH, Ptacek LJ. Mutations in PNKD causing paroxysmal dyskinesia alters protein cleavage and stability. Hum Mol Genet. 2011 Jun 15;20(12):2322-32. doi: 10.1093/hmg/ddr125. Epub 2011 Apr 12. Citation on PubMed or Free article on PubMed Central

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.