Health Conditions Related to Genetic Changes
Pyruvate carboxylase deficiency
More than 30 mutations in the PC gene have been identified in people with pyruvate carboxylase deficiency. This condition causes lactic acid and other potentially toxic compounds to accumulate in the blood. High levels of these substances can damage the body's organs and tissues, particularly in the nervous system.
Most PC gene mutations change a single protein building block (amino acid) in pyruvate carboxylase, which reduces the amount of this enzyme in cells or disrupts its ability to effectively convert pyruvate to oxaloacetate. Other genetic changes lead to the production of an abnormally short version of the enzyme that is completely nonfunctional.
If pyruvate carboxylase is missing or altered, it cannot carry out its role in generating glucose. Any disruption in gluconeogenesis impairs the body's ability to make energy in mitochondria. Additionally, a loss of pyruvate carboxylase allows lactic acid and ammonia, among other compounds, to build up and damage organs and tissues. Researchers suggest that the loss of pyruvate carboxylase function in the nervous system, particularly the role of the enzyme in myelin formation and neurotransmitter production, also contributes to the neurologic features of pyruvate carboxylase deficiency.
More About This Health ConditionOther Names for This Gene
- PCB
- PYC_HUMAN
- Pyruvic carboxylase
Additional Information & Resources
Tests Listed in the Genetic Testing Registry
Scientific Articles on PubMed
Catalog of Genes and Diseases from OMIM
References
- Carbone MA, MacKay N, Ling M, Cole DE, Douglas C, Rigat B, Feigenbaum A, Clarke JT, Haworth JC, Greenberg CR, Seargeant L, Robinson BH. Amerindian pyruvate carboxylase deficiency is associated with two distinct missense mutations. Am J Hum Genet. 1998 Jun;62(6):1312-9. doi: 10.1086/301884. Citation on PubMed or Free article on PubMed Central
- Jitrapakdee S, Vidal-Puig A, Wallace JC. Anaplerotic roles of pyruvate carboxylase in mammalian tissues. Cell Mol Life Sci. 2006 Apr;63(7-8):843-54. doi: 10.1007/s00018-005-5410-y. Citation on PubMed
- Marin-Valencia I, Roe CR, Pascual JM. Pyruvate carboxylase deficiency: mechanisms, mimics and anaplerosis. Mol Genet Metab. 2010 Sep;101(1):9-17. doi: 10.1016/j.ymgme.2010.05.004. Epub 2010 Jun 9. Citation on PubMed
- Monnot S, Serre V, Chadefaux-Vekemans B, Aupetit J, Romano S, De Lonlay P, Rival JM, Munnich A, Steffann J, Bonnefont JP. Structural insights on pathogenic effects of novel mutations causing pyruvate carboxylase deficiency. Hum Mutat. 2009 May;30(5):734-40. doi: 10.1002/humu.20908. Citation on PubMed
- Pithukpakorn M. Disorders of pyruvate metabolism and the tricarboxylic acid cycle. Mol Genet Metab. 2005 Aug;85(4):243-6. doi: 10.1016/j.ymgme.2005.06.006. No abstract available. Citation on PubMed
The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.