URL of this page: https://medlineplus.gov/genetics/gene/gne/

GNE gene

glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase

Normal Function

The GNE gene provides instructions for making an enzyme that is found in cells and tissues throughout the body. This enzyme plays a key role in a chemical pathway that produces sialic acid, which is a simple sugar that attaches to the ends of more complex molecules on the surface of cells. By modifying these molecules, sialic acid influences a wide variety of cellular functions including cell movement (migration), attaching cells to one another (adhesion), signaling between cells, and inflammation.

The enzyme produced from the GNE gene is responsible for two steps in the formation of sialic acid. It first converts a molecule known as UDP-GlcNAc to a similar molecule called ManNAc. In the next step, the enzyme transfers a cluster of oxygen and phosphorus atoms (a phosphate group) to ManNAc to create ManNAc-6-phosphate. Other enzymes then convert ManNAc-6-phosphate to sialic acid.

Health Conditions Related to Genetic Changes

Inclusion body myopathy 2

More than 40 mutations in the GNE gene have been identified in people with inclusion body myopathy 2. Most of these mutations change single protein building blocks (amino acids) in several regions of the enzyme. A few mutations delete a piece of the enzyme or otherwise alter its structure.

Different GNE mutations cause inclusion body myopathy 2 in different populations. One mutation causes the disorder in people of Iranian Jewish heritage; this genetic change replaces the amino acid methionine with the amino acid threonine at position 712 in a region of the enzyme known as the kinase domain (written as Met712Thr or M712T). In the Japanese population, where the condition is called Nonaka myopathy, the most common GNE mutation replaces the amino acid valine with the amino acid leucine at position 572 in the enzyme's kinase domain (written as Val572Leu or V572L).

The mutations responsible for inclusion body myopathy 2 reduce the activity of the enzyme produced from the GNE gene, which decreases the production of sialic acid. As a result, less of this simple sugar is available to attach to cell surface molecules. Researchers are working to determine how a shortage of sialic acid leads to progressive muscle weakness in people with inclusion body myopathy 2. Sialic acid is important for the normal function of many different cells and tissues, so it is unclear why the signs and symptoms of this disorder appear to be limited to the skeletal muscles.

More About This Health Condition


Several mutations in the GNE gene have been found to cause sialuria. Each of these mutations changes a single amino acid in a region of the enzyme known as the allosteric site. This region is critical for the normal regulation of the enzyme.

The enzyme produced from the GNE gene is carefully controlled to ensure that cells produce an appropriate amount of sialic acid. A feedback system shuts off the enzyme when no more sialic acid is needed. Mutations in the allosteric site disrupt this feedback mechanism, resulting in an overproduction of sialic acid. This simple sugar builds up within cells and is excreted in urine. Researchers are working to determine how an accumulation of sialic acid in the body interferes with normal development in people with sialuria.

More About This Health Condition

Other Names for This Gene

  • Bifunctional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase
  • DMRV
  • IBM2
  • N-acylmannosamine kinase
  • Uae1
  • UDP-GlcNAc-2-epimerase/ManAc kinase
  • UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

Scientific Articles on PubMed

Gene and Variant Databases


  • Argov Z, Eisenberg I, Grabov-Nardini G, Sadeh M, Wirguin I, Soffer D, Mitrani-Rosenbaum S. Hereditary inclusion body myopathy: the Middle Eastern genetic cluster. Neurology. 2003 May 13;60(9):1519-23. doi: 10.1212/01.wnl.0000061617.71839.42. Citation on PubMed
  • Eisenberg I, Avidan N, Potikha T, Hochner H, Chen M, Olender T, Barash M, Shemesh M, Sadeh M, Grabov-Nardini G, Shmilevich I, Friedmann A, Karpati G, Bradley WG, Baumbach L, Lancet D, Asher EB, Beckmann JS, Argov Z, Mitrani-Rosenbaum S. The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat Genet. 2001 Sep;29(1):83-7. doi: 10.1038/ng718. Citation on PubMed
  • Eisenberg I, Grabov-Nardini G, Hochner H, Korner M, Sadeh M, Bertorini T, Bushby K, Castellan C, Felice K, Mendell J, Merlini L, Shilling C, Wirguin I, Argov Z, Mitrani-Rosenbaum S. Mutations spectrum of GNE in hereditary inclusion body myopathy sparing the quadriceps. Hum Mutat. 2003 Jan;21(1):99. doi: 10.1002/humu.9100. Citation on PubMed
  • Kayashima T, Matsuo H, Satoh A, Ohta T, Yoshiura K, Matsumoto N, Nakane Y, Niikawa N, Kishino T. Nonaka myopathy is caused by mutations in the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase gene (GNE). J Hum Genet. 2002;47(2):77-9. doi: 10.1007/s100380200004. Citation on PubMed
  • Keppler OT, Hinderlich S, Langner J, Schwartz-Albiez R, Reutter W, Pawlita M. UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science. 1999 May 21;284(5418):1372-6. doi: 10.1126/science.284.5418.1372. Citation on PubMed
  • Klootwijk RD, Savelkoul PJ, Ciccone C, Manoli I, Caplen NJ, Krasnewich DM, Gahl WA, Huizing M. Allele-specific silencing of the dominant disease allele in sialuria by RNA interference. FASEB J. 2008 Nov;22(11):3846-52. doi: 10.1096/fj.08-110890. Epub 2008 Jul 24. Citation on PubMed or Free article on PubMed Central
  • Krause S, Aleo A, Hinderlich S, Merlini L, Tournev I, Walter MC, Argov Z, Mitrani-Rosenbaum S, Lochmuller H. GNE protein expression and subcellular distribution are unaltered in HIBM. Neurology. 2007 Aug 14;69(7):655-9. doi: 10.1212/01.wnl.0000267426.97138.fd. Citation on PubMed
  • Malicdan MC, Noguchi S, Nishino I. Recent advances in distal myopathy with rimmed vacuoles (DMRV) or hIBM: treatment perspectives. Curr Opin Neurol. 2008 Oct;21(5):596-600. doi: 10.1097/WCO.0b013e32830dd595. Citation on PubMed
  • Nishino I, Malicdan MC, Murayama K, Nonaka I, Hayashi YK, Noguchi S. Molecular pathomechanism of distal myopathy with rimmed vacuoles. Acta Myol. 2005 Oct;24(2):80-3. Citation on PubMed
  • Noguchi S, Keira Y, Murayama K, Ogawa M, Fujita M, Kawahara G, Oya Y, Imazawa M, Goto Y, Hayashi YK, Nonaka I, Nishino I. Reduction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase activity and sialylation in distal myopathy with rimmed vacuoles. J Biol Chem. 2004 Mar 19;279(12):11402-7. doi: 10.1074/jbc.M313171200. Epub 2004 Jan 5. Citation on PubMed
  • Penner J, Mantey LR, Elgavish S, Ghaderi D, Cirak S, Berger M, Krause S, Lucka L, Voit T, Mitrani-Rosenbaum S, Hinderlich S. Influence of UDP-GlcNAc 2-epimerase/ManNAc kinase mutant proteins on hereditary inclusion body myopathy. Biochemistry. 2006 Mar 7;45(9):2968-77. doi: 10.1021/bi0522504. Citation on PubMed
  • Seppala R, Lehto VP, Gahl WA. Mutations in the human UDP-N-acetylglucosamine 2-epimerase gene define the disease sialuria and the allosteric site of the enzyme. Am J Hum Genet. 1999 Jun;64(6):1563-9. doi: 10.1086/302411. Citation on PubMed or Free article on PubMed Central
  • Tomimitsu H, Shimizu J, Ishikawa K, Ohkoshi N, Kanazawa I, Mizusawa H. Distal myopathy with rimmed vacuoles (DMRV): new GNE mutations and splice variant. Neurology. 2004 May 11;62(9):1607-10. doi: 10.1212/01.wnl.0000123115.23652.6c. Citation on PubMed
  • Wopereis S, Abd Hamid UM, Critchley A, Royle L, Dwek RA, Morava E, Leroy JG, Wilcken B, Lagerwerf AJ, Huijben KM, Lefeber DJ, Rudd PM, Wevers RA. Abnormal glycosylation with hypersialylated O-glycans in patients with Sialuria. Biochim Biophys Acta. 2006 Jun;1762(6):598-607. doi: 10.1016/j.bbadis.2006.03.009. Citation on PubMed

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.