URL of this page: https://medlineplus.gov/genetics/gene/gfap/

GFAP gene

glial fibrillary acidic protein
From Genetics Home Reference. Learn more

Normal Function

The GFAP gene provides instructions for making a protein called glial fibrillary acidic protein. This protein is a member of the intermediate filament family of proteins. Intermediate filaments form networks that provide support and strength to cells. Several molecules of glial fibrillary acidic protein bind together to form the type of intermediate filament found in astroglial cells. Astroglial cells support and nourish cells in the brain and spinal cord. If brain or spinal cord cells are injured through trauma or disease, astroglial cells react by rapidly producing more glial fibrillary acidic protein.

Although its function is not fully understood, glial fibrillary acidic protein is probably involved in controlling the shape, movement, and function of astroglial cells. Some researchers have suggested that astroglial cells play an important role in the functioning of other cells, including specialized cells that surround nerves (oligodendrocytes) and are involved in the production and long-term maintenance of myelin. Myelin is the fatty substance that forms a protective coating around certain nerve cells and ensures the rapid transmission of nerve impulses. Additionally, astroglial cells may assist in maintaining the protective barrier that allows only certain substances to pass between blood vessels and the brain (the blood-brain barrier).

Health Conditions Related to Genetic Changes

Alexander disease

Researchers have identified more than 50 GFAP mutations that cause Alexander disease. Most of these mutations change one of the building blocks (amino acids) used to make glial fibrillary acidic protein. A few mutations add or remove two amino acids in the protein. All of these changes alter the structure of glial fibrillary acidic protein. The altered protein probably disturbs the formation of normal intermediate filaments. As a result, the abnormal glial fibrillary acidic protein may accumulate in astroglial cells, contributing to the formation of Rosenthal fibers, which impair cell function. It is not well understood how impaired astroglial cells contribute to the abnormal maintenance of myelin, causing the signs and symptoms of Alexander disease.

More About This Health Condition

Other Names for This Gene

  • FLJ45472
  • GFAP_HUMAN
  • Glial Intermediate Filament Protein

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

Scientific Articles on PubMed

Catalog of Genes and Diseases from OMIM

Research Resources

References

  • Der Perng M, Su M, Wen SF, Li R, Gibbon T, Prescott AR, Brenner M, Quinlan RA. The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27. Am J Hum Genet. 2006 Aug;79(2):197-213. Epub 2006 Jun 12. Citation on PubMed or Free article on PubMed Central
  • Li R, Johnson AB, Salomons G, Goldman JE, Naidu S, Quinlan R, Cree B, Ruyle SZ, Banwell B, D'Hooghe M, Siebert JR, Rolf CM, Cox H, Reddy A, GutiĆ©rrez-Solana LG, Collins A, Weller RO, Messing A, van der Knaap MS, Brenner M. Glial fibrillary acidic protein mutations in infantile, juvenile, and adult forms of Alexander disease. Ann Neurol. 2005 Mar;57(3):310-26. Citation on PubMed
  • Omary MB, Coulombe PA, McLean WH. Intermediate filament proteins and their associated diseases. N Engl J Med. 2004 Nov 11;351(20):2087-100. Review. Citation on PubMed
  • Quinlan RA, Brenner M, Goldman JE, Messing A. GFAP and its role in Alexander disease. Exp Cell Res. 2007 Jun 10;313(10):2077-87. Epub 2007 Apr 6. Review. Citation on PubMed or Free article on PubMed Central
  • Srivastava S, Waldman A, Naidu S. Alexander Disease. 2002 Nov 15 [updated 2020 Nov 12]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. GeneReviewsĀ® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from http://www.ncbi.nlm.nih.gov/books/NBK1172/ Citation on PubMed
  • Wippold FJ 2nd, Perry A, Lennerz J. Neuropathology for the neuroradiologist: Rosenthal fibers. AJNR Am J Neuroradiol. 2006 May;27(5):958-61. Review. Citation on PubMed
From Genetics Home Reference

Genetics Home Reference has merged with MedlinePlus. Genetics Home Reference content now can be found in the "Genetics" section of MedlinePlus. Learn more

The resources on this site should not be used as a substitute for professional medical care or advice. Users with questions about a personal health condition should consult with a qualified healthcare professional.