URL of this page: https://medlineplus.gov/genetics/gene/cul3/

CUL3 gene

cullin 3

Normal Function

The CUL3 gene provides instructions for making a protein called cullin-3. This protein plays a role in the cell machinery that breaks down (degrades) unwanted proteins, called the ubiquitin-proteasome system.

Cullin-3 is a core piece of a complex known as an E3 ubiquitin ligase. E3 ubiquitin ligases function as part of the ubiquitin-proteasome system by tagging damaged and excess proteins with molecules called ubiquitin. Ubiquitin serves as a signal to specialized cell structures known as proteasomes, which attach (bind) to the tagged proteins and degrade them. The ubiquitin-proteasome system acts as the cell's quality control system by disposing of damaged, misshapen, and excess proteins. This system also regulates the level of proteins involved in several critical cell activities such as the timing of cell division and growth.

E3 ubiquitin ligases containing the cullin-3 protein tag proteins called WNK1 and WNK4 with ubiquitin. These proteins are involved in controlling blood pressure in the body. By regulating the amount of WNK1 and WNK4 available, cullin-3 plays a role in blood pressure control.

Health Conditions Related to Genetic Changes

Pseudohypoaldosteronism type 2

At least 17 mutations in the CUL3 gene can cause pseudohypoaldosteronism type 2 (PHA2), a condition characterized by high blood pressure (hypertension) and high levels of potassium in the blood (hyperkalemia). These mutations lead to production of an abnormally short cullin-3 protein that is missing a region. Studies show that this change alters the function of the E3 ubiquitin ligase complex. The change leads to impaired degradation of the WNK4 protein, although the exact mechanism is unclear. The resulting excess of WNK4 protein disrupts normal control of blood pressure, causing hypertension and other features of PHA2. It is unknown if WNK1 is affected by the alterations to the E3 ubiquitin ligase or whether WNK1 plays a role in PHA2 caused by CUL3 gene mutations.

More About This Health Condition

Other Names for This Gene

  • CUL-3
  • cullin-3 isoform 1
  • cullin-3 isoform 2
  • cullin-3 isoform 3
  • PHA2E

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

Scientific Articles on PubMed

Catalog of Genes and Diseases from OMIM

Gene and Variant Databases


  • Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, Tikhonova IR, Bjornson R, Mane SM, Colussi G, Lebel M, Gordon RD, Semmekrot BA, Poujol A, Välimäki MJ, De Ferrari ME, Sanjad SA, Gutkin M, Karet FE, Tucci JR, Stockigt JR, Keppler-Noreuil KM, Porter CC, Anand SK, Whiteford ML, Davis ID, Dewar SB, Bettinelli A, Fadrowski JJ, Belsha CW, Hunley TE, Nelson RD, Trachtman H, Cole TR, Pinsk M, Bockenhauer D, Shenoy M, Vaidyanathan P, Foreman JW, Rasoulpour M, Thameem F, Al-Shahrouri HZ, Radhakrishnan J, Gharavi AG, Goilav B, Lifton RP. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012 Jan 22;482(7383):98-102. doi: 10.1038/nature10814. Citation on PubMed or Free article on PubMed Central
  • McCormick JA, Yang CL, Zhang C, Davidge B, Blankenstein KI, Terker AS, Yarbrough B, Meermeier NP, Park HJ, McCully B, West M, Borschewski A, Himmerkus N, Bleich M, Bachmann S, Mutig K, Argaiz ER, Gamba G, Singer JD, Ellison DH. Hyperkalemic hypertension-associated cullin 3 promotes WNK signaling by degrading KLHL3. J Clin Invest. 2014 Nov;124(11):4723-36. doi: 10.1172/JCI76126. Epub 2014 Sep 24. Citation on PubMed or Free article on PubMed Central
  • Ohta A, Schumacher FR, Mehellou Y, Johnson C, Knebel A, Macartney TJ, Wood NT, Alessi DR, Kurz T. The CUL3-KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J. 2013 Apr 1;451(1):111-22. doi: 10.1042/BJ20121903. Citation on PubMed or Free article on PubMed Central
  • Shibata S, Zhang J, Puthumana J, Stone KL, Lifton RP. Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci U S A. 2013 May 7;110(19):7838-43. doi: 10.1073/pnas.1304592110. Epub 2013 Apr 1. Citation on PubMed or Free article on PubMed Central

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.