Skip navigation

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

URL of this page:

COLQ gene

collagen like tail subunit of asymmetric acetylcholinesterase

Normal Function

The COLQ gene provides instructions for making a protein that plays an important role in the neuromuscular junction. The neuromuscular junction is the area between the ends of nerve cells and muscle cells where signals are relayed to trigger muscle movement.

The ColQ protein anchors another protein called acetylcholinesterase to the muscle cell membrane at the neuromuscular junction. The ColQ protein is made up of three identical parts (subunits). Each subunit attaches (binds) to a bundle of four acetylcholinesterase proteins. Acetylcholinesterase plays a role in regulating the length of signaling between nerve cells and muscle cells by breaking down the signaling protein acetylcholine.

Health Conditions Related to Genetic Changes

Congenital myasthenic syndrome

More than 35 mutations in the COLQ gene have been found to cause congenital myasthenic syndrome. Most of these mutations change single protein building blocks (amino acids) in the ColQ protein or lead to the production of a shortened, nonfunctional protein. A lack of functional ColQ protein leads to a reduction in the amount of acetylcholinesterase that is available in the neuromuscular junction. As a result, acetylcholine is not broken down so signaling between nerve and muscle cells is prolonged. This signaling overload can damage muscle cells, leading to the muscle weakness characteristic of congenital myasthenic syndrome.

More About This Health Condition

Other Names for This Gene

  • acetylcholinesterase collagenic tail peptide
  • acetylcholinesterase-associated collagen
  • AChE Q subunit
  • collagen-like tail subunit (single strand of homotrimer) of asymmetric acetylcholinesterase
  • collagenic tail of endplate acetylcholinesterase

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

Scientific Articles on PubMed

Catalog of Genes and Diseases from OMIM

Gene and Variant Databases


  • Barisic N, Chaouch A, Muller JS, Lochmuller H. Genetic heterogeneity and pathophysiological mechanisms in congenital myasthenic syndromes. Eur J Paediatr Neurol. 2011 May;15(3):189-96. doi: 10.1016/j.ejpn.2011.03.006. Epub 2011 Apr 17. Citation on PubMed
  • Engel AG, Shen XM, Selcen D, Sine SM. What have we learned from the congenital myasthenic syndromes. J Mol Neurosci. 2010 Jan;40(1-2):143-53. doi: 10.1007/s12031-009-9229-0. Epub 2009 Aug 18. Citation on PubMed or Free article on PubMed Central
  • Engel AG. Congenital myasthenic syndromes in 2012. Curr Neurol Neurosci Rep. 2012 Feb;12(1):92-101. doi: 10.1007/s11910-011-0234-7. Citation on PubMed or Free article on PubMed Central
  • Kinali M, Beeson D, Pitt MC, Jungbluth H, Simonds AK, Aloysius A, Cockerill H, Davis T, Palace J, Manzur AY, Jimenez-Mallebrera C, Sewry C, Muntoni F, Robb SA. Congenital myasthenic syndromes in childhood: diagnostic and management challenges. J Neuroimmunol. 2008 Sep 15;201-202:6-12. doi: 10.1016/j.jneuroim.2008.06.026. Epub 2008 Aug 15. Citation on PubMed

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.