Skip navigation

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

URL of this page: https://medlineplus.gov/genetics/gene/cbfb/

CBFB gene

core-binding factor subunit beta

Normal Function

The CBFB gene provides instructions for making a protein called core binding factor beta (CBFβ), which is one piece of a protein complex known as core binding factor (CBF). CBFβ attaches (binds) to one of three related RUNX proteins (RUNX1, RUNX2, or RUNX3) to form different versions of CBF. These protein complexes bind to specific regions of DNA and help turn on (activate) certain genes.

The presence of CBFβ helps the complex bind to DNA and protects the RUNX protein from being broken down. The function of CBF depends on which RUNX protein it includes. Once bound to DNA, the RUNX1 protein controls the activity of genes involved in the development of blood cells (hematopoiesis). The RUNX2 protein regulates genes important for bone cell development and formation of the skeleton. The RUNX3 protein primarily affects genes involved in the development of nerve cells.

Health Conditions Related to Genetic Changes

Core binding factor acute myeloid leukemia

Rearrangements of genetic material affecting the CBFB gene are involved in a form of blood cancer known as acute myeloid leukemia (AML). Because the genetic changes affect CBF, the condition is classified as core binding factor AML (CBF-AML). The most common of these rearrangements is an inversion of a region of chromosome 16 (written as inv(16)). An inversion involves breakage of the chromosome in two places; the resulting piece of DNA is reversed and reinserted into the chromosome. Less commonly, a rearrangement known as a translocation occurs between the two copies of chromosome 16 (written as t(16;16)). In this translocation, pieces of DNA from each copy of the chromosome break off and are interchanged. Both types of genetic rearrangement lead to the fusion of parts of two genes on chromosome 16, CBFB and MYH11. These rearrangements are associated with 5 to 8 percent of cases of AML in adults.

When these rearrangements occur in early blood cells, the function of the RUNX1 protein is particularly affected. The protein produced from the fusion gene, called CBFβ-MYH11, can still bind to RUNX1 to form CBF. However, the function of CBF is impaired. The presence of CBFβ-MYH11 may block binding of CBF to DNA, preventing RUNX1 from controlling gene activity. Alternatively, the MYH11 portion of the fusion protein may interact with other proteins that prevent RUNX1 from controlling gene activity. This change in gene activity blocks the maturation (differentiation) of blood cells and leads to the production of abnormal, immature white blood cells called myeloid blasts. While inv(16) and t(16;16) are important for leukemia development, one or more additional genetic changes are typically needed for the myeloid blasts to develop into cancerous leukemia cells.

More About This Health Condition

Other Names for This Gene

  • CBF-beta
  • core-binding factor beta subunit
  • core-binding factor, beta subunit
  • PEA2-beta
  • PEBB_HUMAN
  • PEBP2-beta
  • PEBP2B
  • polyomavirus enhancer binding protein 2, beta subunit
  • polyomavirus enhancer-binding protein 2 beta subunit
  • SL3-3 enhancer factor 1 beta subunit
  • SL3-3 enhancer factor 1 subunit beta
  • SL3/AKV core-binding factor beta subunit

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

Scientific Articles on PubMed

Catalog of Genes and Diseases from OMIM

Gene and Variant Databases

References

  • Eghtedar A, Borthakur G, Ravandi F, Jabbour E, Cortes J, Pierce S, Kantarjian H, Garcia-Manero G. Characteristics of translocation (16;16)(p13;q22) acute myeloid leukemia. Am J Hematol. 2012 Mar;87(3):317-8. doi: 10.1002/ajh.22258. Epub 2012 Jan 7. Citation on PubMed or Free article on PubMed Central
  • Goyama S, Mulloy JC. Molecular pathogenesis of core binding factor leukemia: current knowledge and future prospects. Int J Hematol. 2011 Aug;94(2):126-133. doi: 10.1007/s12185-011-0858-z. Epub 2011 May 3. Citation on PubMed
  • Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T, Ito Y. Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J. 2001 Feb 15;20(4):723-33. doi: 10.1093/emboj/20.4.723. Citation on PubMed or Free article on PubMed Central
  • Shigesada K, van de Sluis B, Liu PP. Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MHY11. Oncogene. 2004 May 24;23(24):4297-307. doi: 10.1038/sj.onc.1207748. Citation on PubMed
  • Yoshida CA, Furuichi T, Fujita T, Fukuyama R, Kanatani N, Kobayashi S, Satake M, Takada K, Komori T. Core-binding factor beta interacts with Runx2 and is required for skeletal development. Nat Genet. 2002 Dec;32(4):633-8. doi: 10.1038/ng1015. Epub 2002 Nov 18. Citation on PubMed

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.