Frequency
Diamond-Blackfan anemia affects approximately 5 to 7 per million newborn babies worldwide.
Causes
Diamond-Blackfan anemia can be caused by mutations in one of many genes, including the RPL5, RPL11, RPL35A, RPS10, RPS17, RPS19, RPS24, and RPS26 genes. These and other genes associated with Diamond-Blackfan anemia provide instructions for making ribosomal proteins, which are components of cellular structures called ribosomes. Ribosomes process the cell's genetic instructions to create proteins.
Each ribosome is made up of two parts (subunits) called the large and small subunits. The ribosomal proteins produced from the RPL5, RPL11, and RPL35A genes are among those found in the large subunit. The proteins produced from the RPS10, RPS17, RPS19, RPS24, and RPS26 genes are among those found in the small subunit.
Some ribosomal proteins are involved in the assembly or stability of ribosomes. Others help carry out the ribosome's main function of building new proteins. Studies suggest that some ribosomal proteins may have other functions, such as participating in chemical signaling pathways within the cell, regulating cell division, and controlling the self-destruction of cells (apoptosis).
Approximately 25 percent of individuals with Diamond-Blackfan anemia have mutations in the RPS19 gene. About another 25 to 35 percent of individuals with this disorder have mutations in the RPL5, RPL11, RPL35A, RPS10, RPS17, RPS24, or RPS26 gene. Mutations in any of these genes are believed to cause problems with ribosome function. Studies indicate that a shortage of functioning ribosomes may increase the self-destruction of blood-forming cells in the bone marrow, resulting in anemia. Abnormal regulation of cell division or inappropriate triggering of apoptosis may contribute to the other health problems that affect some people with Diamond-Blackfan anemia. Scientists are working to determine why the blood abnormalities and physical problems can vary so much between individuals.
Mutations in many other genes, some of which have not been identified, account for the remaining Diamond-Blackfan anemia cases. While mutations in genes that provide instructions for ribosomal proteins cause most cases of Diamond-Blackfan anemia, gene changes affecting proteins that interact with ribosomal proteins or that play other roles in blood-forming processes have been identified in a few individuals with this disorder.
Inheritance
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.
In approximately 45 percent of cases, an affected person inherits the mutation from one affected parent. The remaining cases result from new mutations in the gene and occur in people with no history of the disorder in their family.
Other Names for This Condition
- Aase syndrome
- Aase-Smith syndrome II
- BDA
- BDS
- Blackfan Diamond anemia
- Blackfan-Diamond disease
- Blackfan-Diamond syndrome
- Chronic congenital agenerative anemia
- Congenital erythroid hypoplastic anemia
- Congenital hypoplastic anemia of Blackfan and Diamond
- Congenital pure red cell anemia
- Congenital pure red cell aplasia
- DBA
- Erythrogenesis imperfecta
- Hypoplastic congenital anemia
- Inherited erythroblastopenia
- Pure hereditary red cell aplasia
Additional Information & Resources
Genetic Testing Information
Genetic and Rare Diseases Information Center
Patient Support and Advocacy Resources
Clinical Trials
Catalog of Genes and Diseases from OMIM
- DIAMOND-BLACKFAN ANEMIA 1; DBA1
- DIAMOND-BLACKFAN ANEMIA 14 WITH MANDIBULOFACIAL DYSOSTOSIS; DBA14
- DIAMOND-BLACKFAN ANEMIA 15 WITH MANDIBULOFACIAL DYSOSTOSIS; DBA15
- DIAMOND-BLACKFAN ANEMIA 2; DBA2
- DIAMOND-BLACKFAN ANEMIA 4; DBA4
- DIAMOND-BLACKFAN ANEMIA 5; DBA5
- DIAMOND-BLACKFAN ANEMIA 3; DBA3
- DIAMOND-BLACKFAN ANEMIA 12; DBA12
- DIAMOND-BLACKFAN ANEMIA 6; DBA6
- DIAMOND-BLACKFAN ANEMIA 7; DBA7
- DIAMOND-BLACKFAN ANEMIA 8; DBA8
- DIAMOND-BLACKFAN ANEMIA 13; DBA13
- DIAMOND-BLACKFAN ANEMIA 16; DBA16
- DIAMOND-BLACKFAN ANEMIA 17; DBA17
- DIAMOND-BLACKFAN ANEMIA 9; DBA9
- DIAMOND-BLACKFAN ANEMIA 10; DBA10
- DIAMOND-BLACKFAN ANEMIA 11; DBA11
Scientific Articles on PubMed
References
- Ball S. Diamond Blackfan anemia. Hematology Am Soc Hematol Educ Program. 2011;2011:487-91. doi: 10.1182/asheducation-2011.1.487. Citation on PubMed
- Boria I, Garelli E, Gazda HT, Aspesi A, Quarello P, Pavesi E, Ferrante D, Meerpohl JJ, Kartal M, Da Costa L, Proust A, Leblanc T, Simansour M, Dahl N, Frojmark AS, Pospisilova D, Cmejla R, Beggs AH, Sheen MR, Landowski M, Buros CM, Clinton CM, Dobson LJ, Vlachos A, Atsidaftos E, Lipton JM, Ellis SR, Ramenghi U, Dianzani I. The ribosomal basis of Diamond-Blackfan Anemia: mutation and database update. Hum Mutat. 2010 Dec;31(12):1269-79. doi: 10.1002/humu.21383. Citation on PubMed or Free article on PubMed Central
- Boultwood J, Pellagatti A, Wainscoat JS. Haploinsufficiency of ribosomal proteins and p53 activation in anemia: Diamond-Blackfan anemia and the 5q- syndrome. Adv Biol Regul. 2012 Jan;52(1):196-203. doi: 10.1016/j.advenzreg.2011.09.008. No abstract available. Citation on PubMed
- Danilova N, Gazda HT. Ribosomopathies: how a common root can cause a tree of pathologies. Dis Model Mech. 2015 Sep;8(9):1013-26. doi: 10.1242/dmm.020529. Citation on PubMed or Free article on PubMed Central
- Ellis SR, Gleizes PE. Diamond Blackfan anemia: ribosomal proteins going rogue. Semin Hematol. 2011 Apr;48(2):89-96. doi: 10.1053/j.seminhematol.2011.02.005. Citation on PubMed
- Ellis SR. Nucleolar stress in Diamond Blackfan anemia pathophysiology. Biochim Biophys Acta. 2014 Jun;1842(6):765-8. doi: 10.1016/j.bbadis.2013.12.013. Epub 2014 Jan 8. Citation on PubMed
- Farrar JE, Dahl N. Untangling the phenotypic heterogeneity of Diamond Blackfan anemia. Semin Hematol. 2011 Apr;48(2):124-35. doi: 10.1053/j.seminhematol.2011.02.003. Citation on PubMed or Free article on PubMed Central
- Ito E, Konno Y, Toki T, Terui K. Molecular pathogenesis in Diamond-Blackfan anemia. Int J Hematol. 2010 Oct;92(3):413-8. doi: 10.1007/s12185-010-0693-7. Epub 2010 Sep 30. Citation on PubMed
- Mills EW, Green R. Ribosomopathies: There's strength in numbers. Science. 2017 Nov 3;358(6363):eaan2755. doi: 10.1126/science.aan2755. Citation on PubMed
- Narla A, Hurst SN, Ebert BL. Ribosome defects in disorders of erythropoiesis. Int J Hematol. 2011 Feb;93(2):144-149. doi: 10.1007/s12185-011-0776-0. Epub 2011 Feb 1. Citation on PubMed or Free article on PubMed Central
- Sieff C. Diamond-Blackfan Anemia. 2009 Jun 25 [updated 2023 Mar 23]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews(R) [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. Available from http://www.ncbi.nlm.nih.gov/books/NBK7047/ Citation on PubMed
- Vlachos A, Blanc L, Lipton JM. Diamond Blackfan anemia: a model for the translational approach to understanding human disease. Expert Rev Hematol. 2014 Jun;7(3):359-72. doi: 10.1586/17474086.2014.897923. Epub 2014 Mar 26. Citation on PubMed
The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.