URL of this page: https://medlineplus.gov/druginfo/natural/735.html

Phosphate Salts

What is it?

Phosphate salts refers to many different combinations of the chemical phosphate with salts and minerals. Foods high in phosphate include dairy products, whole grain cereals, nuts, and certain meats. Phosphates found in dairy products and meats seem to be more easily absorbed by the body than phosphates found in cereal grains. Cola drinks contain a lot of phosphate - so much, in fact, that they can cause too much phosphate in the blood.

People use phosphate salts for medicine. Be careful not to confuse phosphate salts with substances such as organophosphates, which are very poisonous.

Phosphate salts are most commonly used for bowel cleansing, low blood levels of phosphate, constipation, high blood levels of calcium, and heartburn.

How effective is it?

Natural Medicines Comprehensive Database rates effectiveness based on scientific evidence according to the following scale: Effective, Likely Effective, Possibly Effective, Possibly Ineffective, Likely Ineffective, Ineffective, and Insufficient Evidence to Rate.

The effectiveness ratings for PHOSPHATE SALTS are as follows:

Effective for...

  • Preparing the bowel for a medical procedure. Taking sodium phosphate products by mouth before a colonoscopy procedure is effective for bowel cleansing. Some sodium phosphate products (OsmoPrep, Salix Pharmaceuticals; Visicol, Salix Pharmaceuticals) are approved by the US Food and Drug Administration (FDA) for this indication. However, taking sodium phosphate can increase the risk of kidney damage in some people. For this reason, sodium phosphate products are no longer commonly used in the U.S. for bowel preparation.
  • Low phosphate levels in the blood. Taking sodium or potassium phosphate by mouth is effective for preventing or treating low phosphate levels in the blood. Intravenous phosphate salts may also treat low phosphate levels in the blood when used under the supervision of a physician.

Likely effective for...

  • Constipation. Sodium phosphate is an FDA-permitted over-the-counter (OTC) ingredient for the treatment of constipation. These products are taken by mouth or used as enemas.
  • Indigestion. Aluminum phosphate and calcium phosphate are FDA-permitted ingredients used in antacids.
  • High calcium levels in the blood. Taking phosphate salt (except calcium phosphate) by mouth is likely effective for treating high levels of calcium in the blood. But intravenous phosphate salts should not be used.

Possibly effective for...

  • Kidney stones (nephrolithiasis). Taking potassium phosphate by mouth can help prevent calcium kidney stones from forming in patients with high urine levels of calcium.

Insufficient evidence to rate effectiveness for...

  • Athletic performance. Some early research shows that taking sodium phosphate by mouth for 6 days before high-intensity cycling or sprinting can improve athletic performance. But other early research shows no benefit. More studies are needed in larger groups of people to see is sodium phosphate is really beneficial. Taking other phosphate salts such as calcium phosphate or potassium phosphate doesn't improve running or cycling performance.
  • Diabetes complication (diabetic ketoacidosis). Early research shows that giving potassium phosphate intravenously (by IV) does not improve a diabetes complication in which the body produces too many blood acids called ketones. People with this condition should only be given phosphates if they have low phosphate levels.
  • Osteoporosis. Research shows that taking calcium phosphate by mouth helps improve bone density of the hip and lower spine in women with osteoporosis. But it doesn't work better than other sources of calcium, such as calcium carbonate.
  • Complications that occur upon eating in people who were previously starving (refeeding syndrome). Early research shows that giving sodium and potassium phosphate intravenously (by IV) over 24 hours prevents refeeding syndrome when restarting nutrition in people who are severely malnourished or starved.
  • Sensitive teeth.
  • Other conditions.
More evidence is needed to rate phosphate salts for these uses.

How does it work?

Phosphates are normally absorbed from food and are important chemicals in the body. They are involved in cell structure, energy transport and storage, vitamin function, and numerous other processes essential to health. Phosphate salts can act as laxatives by causing more fluid to be drawn into the intestines and stimulating the gut to push out its contents faster.

Are there safety concerns?

Phosphate salts containing sodium, potassium, aluminum, or calcium are LIKELY SAFE for most people when taken by mouth, inserted into the rectum, or given intravenously (by IV) appropriately and short-term. Phosphate salts should only be used intravenously (by IV) under the supervision of a physician.

Phosphate salts (expressed as phosphorous) are POSSIBLY UNSAFE when taken in doses higher than 4 grams per day for adults younger than 70 years of age and 3 grams per day for people who are older.

Regular long-term use can upset the balance of phosphates and other chemicals in the body and should be monitored by a healthcare professional to avoid serious side effects. Phosphate salts can irritate the digestive tract and cause stomach upset, diarrhea, constipation, headache, tiredness, and other problems.

Do not confuse phosphate salts with substances such as organophosphates, or with tribasic sodium phosphates and tribasic potassium phosphates, which are very poisonous.

Special precautions & warnings:

Pregnancy and breast-feeding: Phosphate salts from dietary sources are LIKELY SAFE for pregnant or breast-feeding women when used at the recommended allowances of 1250 mg daily for mothers between 14-18 years of age and 700 mg daily for those over 18 years of age. Other amounts are POSSIBLY UNSAFE and should only be used with the advice and ongoing care of a healthcare professional.

Children: Phosphate salts are LIKELY SAFE for children when used at the recommended daily allowances of 460 mg for children 1-3 years of age; 500 mg for children 4-8 years of age; and 1250 mg for children 9-18 years of age. Phosphate salts are POSSIBLY UNSAFE if the amount of phosphate consumed (expressed as phosphorous) exceeds the tolerable upper intake level (UL). The ULs are 3 grams per day for children 1-8 years; and 4 grams per day for children 9 years and older.

Heart disease: Avoid using phosphate salts that contain sodium if you have heart disease.

Fluid retention (edema): Avoid using phosphate salts that contain sodium if you have cirrhosis, heart failure, or other conditions that can cause edema.

High levels of calcium in the blood (hypercalcemia): Use phosphate salts cautiously if you have hypercalcemia. Too much phosphate could cause calcium to be deposited where it shouldn't be in your body.

High levels of phosphate in the blood: People with Addison's disease, severe heart and lung disease, kidney disease, thyroid problems, or liver disease are more likely than other people to develop too much phosphate in their blood when they take phosphate salts. Use phosphate salts only with the advice and ongoing care of a healthcare professional if you have one of these conditions.

Kidney disease: Use phosphate salts only with the advice and ongoing care of a healthcare professional if you have kidney problems.

Are there interactions with medications?

Moderate
Be cautious with this combination.
Bisphosphonates
Bisphosphonate medications and phosphate salts can both lower calcium levels in the body. Taking large amounts of phosphate salts along with bisphosphonate medications might cause calcium levels to become too low.

Some bisphosphonates include alendronate (Fosamax), etidronate (Didronel), risedronate (Actonel), tiludronate (Skelid), and others.

Are there interactions with herbs and supplements?

Calcium
Phosphate can combine with calcium. This reduces the body's ability to absorb phosphate and calcium. To avoid this interaction, phosphate should be taken at least 2 hours before or after taking calcium.
Iron
Phosphate can combine with iron. This reduces the body's ability to absorb phosphate and iron. To avoid this interaction, phosphate should be taken at least 2 hours before or after taking iron.
Magnesium
Phosphate can combine with magnesium. This reduces the body's ability to absorb phosphate and magnesium. To avoid this interaction, phosphate should be taken at least 2 hours before or after taking magnesium.

Are there interactions with foods?

Phosphate-containing foods and drinks
In theory, taking phosphate with phosphate-containing foods and drinks might increase phosphate levels and increase the risk of side effects, especially in people with kidney problems. Phosphate-containing foods and beverages include cola, wine, beer, whole grain cereals, nuts, dairy products and some meats.

What dose is used?

The following doses have been studied in scientific research:

BY MOUTH:
  • For raising phosphate levels that are too low: Healthcare providers measure the levels of phosphate and calcium in the blood and give just enough phosphate to correct the problem.
  • For lowering calcium levels that are too high: Healthcare providers measure the levels of phosphate and calcium in the blood and give just enough phosphate to correct the problem.
  • For preparing the bowel for a medical procedure: Three to four prescription tablets (OsmoPrep, Salix Pharmaceuticals; Visicol, Salix Pharmaceuticals) each containing 1.5 grams of sodium phosphate are taken with 8 ounces of water every 15 minutes for a total of 20 tablets the evening before colonoscopy. On the following morning, 3-4 tablets are taken with 8 ounces of water every 15 minutes until 12-20 tablets have been taken.
  • Kidney stones (nephrolithiasis): Potassium and sodium phosphate salts providing 1200-1500 mg of elemental phosphate daily have been used.
BY IV:
  • For raising phosphate levels that are too low: Intravenous (IV) products containing sodium phosphate or potassium phosphate have been used. Doses of 15-30 mmol have been given over 2-12 hours. Higher doses have been used if needed.
The recommended daily dietary allowances (RDAs) of phosphate (expressed as phosphorus) are: Children 1-3 years, 460 mg; children 4-8 years, 500 mg; men and women 9-18 years, 1250 mg; men and women over 18 years, 700 mg.
The adequate intakes (AI) for infants are: 100 mg for infants 0-6 months old and 275 mg for infants 7-12 months of age.
Tolerable Upper Intake Levels (UL), the highest intake level at which no unwanted side effects are expected, for phosphate (expressed as phosphorus) per day are: children 1-8 years, 3 grams per day; children and adults 9-70 years, 4 grams; adults older than 70 years, 3 grams; pregnant women 14-50 years, 3.5 grams; and breast-feeding women 14-50 years, 4 grams.

Other names

Aluminum phosphate, Bone Phosphate, Calcium phosphate, Calcium Orthophosphate, Calcium Phosphate Dibasic Anhydrous, Calcium Phosphate-Bone Ash, Calcium Phosphate Dibasic Dihydrate, Calcium Phosphate Dibasique Anhydre, Calcium Phosphate Dibasique Dihydrate, Calcium Phosphate Tribasic, Calcium Phosphate Tribasique, Dibasic Calcium Phosphate Dihydrate, Di-Calcium Phosphate, Dicalcium Phosphate, Dicalcium Phosphates, Neutral Calcium Phosphate, Orthophosphate de Calcium, Phosphate d'Aluminium, Phosphate de Calcium, Phosphate de Magnésium, Phosphate Neutre de Calcium, Phosphate d'Os, Phosphate Tricalcium, Precipitated Calcium Phosphate, Précipitation du Phosphate de Calcium, Précipité de Phosphate de Calcium, Tertiary Calcium Phosphate, Tricalcium Phosphate, Whitlockite, Magnesium Phosphate, Merisier, Potassium phosphate, Dibasic Potassium Phosphate, Dipotassium Hydrogen Orthophosphate, Dipotassium Monophosphate, Dipotassium Phosphate, Monobasic Potassium Phosphate, Potassium Acid Phosphate, Potassium Biphosphate, Potassium Dihydrogen Orthophosphate, Potassium Hydrogen Phosphate, Phosphate de Dipotassium, Phosphate d'Hydrogène de Potassium, Phosphate de Potassium, Phosphate de Potassium Dibasique, Phosphate de Potassium Monobasique, Sodium phosphate, Anhydrous Sodium Phosphate, Dibasic Sodium Phosphate, Disodium Hydrogen Orthophosphate, Disodium Hydrogen Orthophosphate Dodecahydrate, Disodium Hydrogen Phosphate, Disodium Phosphate, Phosphate of Soda, Sales de Fosfato, Sels de Phosphate, Sodium Orthophosphate, Orthophosphate Disodique d'Hydrogène, Phosphate Disodique d'Hydrogène, Orthophosphate de Sodium, Phosphate de Sodium Anhydre, Phosphate de Sodium Dibasique, Phosphorus.

Methodology

To learn more about how this article was written, please see the Natural Medicines Comprehensive Database methodology.

References

  1. Visicol Tablets Prescribing information. Salix Pharmaceuticals, Raleigh, NC. March 2013. (https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/021097s016lbl.pdf). Accessed 09/28/17.
  2. Delegge M, Kaplan R. Efficacy of bowel preparation with the use of a prepackaged, low fibre diet with a low sodium, magnesium citrate cathartic vs. a clear liquiddiet with a standard sodium phosphate cathartic. Aliment Pharmacol Ther. 2005 Jun 15;21:1491-5. View abstract.
  3. Johnson DA, Barkun AN, Cohen LB, et al.; US Multi-Society Task Force on Colorectal Cancer. Optimizing Adequacy of Bowel Cleansing for Colonoscopy: Recommendations From the US Multi-Society Task Force on Colorectal Cancer. Am J Gastroenterol 2014;109:1528-45. View abstract.
  4. Nam SY, Choi IJ, Park KW, Ryu KH, Kim BC, Sohn DK, Nam BH, Kim CG. Risk of hemorrhagic gastropathy associated with colonoscopy bowel preparation using oral sodium phosphate solution. Endoscopy. 2010 Feb;42:109-13. View abstract.
  5. Ori Y, Rozen-Zvi B, Chagnac A, Herman M, Zingerman B, Atar E, Gafter U, Korzets A. Fatalities and severe metabolic disorders associated with the use of sodium phosphate enemas: a single center's experience. Arch Intern Med. 2012 Feb 13;172:263-5. View abstract.
  6. Ladenhauf HN, Stundner O, Spreitzhofer F, Deluggi S. Severe hyperphosphatemia after administration of sodium-phosphate containing laxatives in children: case series and systematic review of literature. Pediatr Surg Int. 2012 Aug;28:805-14. View abstract.
  7. Schaefer M, Littrell E, Khan A, Patterson ME. Estimated GFR Decline Following Sodium Phosphate Enemas Versus Polyethylene Glycol for Screening Colonoscopy: A Retrospective Cohort Study. Am J Kidney Dis. 2016 Apr;67:609-16. View abstract.
  8. Brunelli SM. Association between oral sodium phosphate bowel preparations and kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009 Mar;53:448-56. View abstract.
  9. Choi NK, Lee J, Chang Y, Kim YJ, Kim JY, Song HJ, Shin JY, Jung SY, Choi Y, Lee JH, Park BJ. Acute renal failure following oral sodium phosphate bowel preparation: a nationwide case-crossover study. Endoscopy. 2014 Jun;46:465-70. View abstract.
  10. Belsey J, Crosta C, Epstein O, Fischbach W, Layer P, Parente F, Halphen M. Meta-analysis: the relative efficacy of oral bowel preparations for colonoscopy 1985-2010. Aliment Pharmacol Ther. 2012 Jan;35:222-37. View abstract.
  11. Belsey J, Crosta C, Epstein O, Fischbach W, Layer P, Parente F, Halphen M. Meta-analysis: efficacy of small bowel preparation for small bowel video capsule endoscopy. Curr Med Res Opin. 2012 Dec;28:1883-90. View abstract.
  12. Czuba M, Zajac A, Poprzecki S, Cholewa J, Woska S. Effects of Sodium Phosphate Loading on Aerobic Power and Capacity in off Road Cyclists. J Sports Sci Med. 2009 Dec 1;8:591-9. View abstract.
  13. Brewer CP, Dawson B, Wallman KE, Guelfi KJ. Effect of repeated sodium phosphate loading on cycling time-trial performance and VO2peak. Int J Sport Nutr Exerc Metab. 2013 Apr;23:187-94. View abstract.
  14. Buck CL, Wallman KE, Dawson B, Guelfi KJ. Sodium phosphate as an ergogenic aid. Sports Med. 2013 Jun;43:425-35. View abstract.
  15. Buck CL, Dawson B, Guelfi KJ, McNaughton L, Wallman KE. Sodium phosphate supplementation and time trial performance in female cyclists. J Sports Sci Med. 2014 Sep 1;13:469-75. View abstract.
  16. Brewer CP, Dawson B, Wallman KE, Guelfi KJ. Effect of Sodium Phosphate Supplementation on Cycling Time Trial Performance and VO2 1 and 8 Days Post Loading. J Sports Sci Med. 2014 Sep 1;13:529-34. View abstract.
  17. West JS, Ayton T, Wallman KE, Guelfi KJ. The effect of 6 days of sodium phosphate supplementation on appetite, energy intake, and aerobic capacity in trained men and women. Int J Sport Nutr Exerc Metab. 2012 Dec;22:422-9. View abstract.
  18. van Vugt van Pinxteren MW, van Kouwen MC, van Oijen MG, van Achterberg T, Nagengast FM. A prospective study of bowel preparation for colonoscopy with polyethylene glycol-electrolyte solution versus sodium phosphate in Lynch syndrome: a randomized trial. Fam Cancer. 2012 Sep;11:337-41. View abstract.
  19. Lee SH, Lee DJ, Kim KM, Seo SW, Kang JK, Lee EH, Lee DR. Comparison of the efficacy and safety of sodium phosphate tablets and polyethylene glycol solution for bowel cleansing in healthy Korean adults. Yonsei Med J. 2014 Nov;55:1542-55. View abstract.
  20. Kopec BJ, Dawson BT, Buck C, Wallman KE. Effects of sodium phosphate and caffeine ingestion on repeated-sprint ability in male athletes. J Sci Med Sport. 2016 Mar;19:272-6. View abstract.
  21. Jung YS, Lee CK, Kim HJ, Eun CS, Han DS, Park DI. Randomized controlled trial of sodium phosphate tablets vs polyethylene glycol solution for colonoscopy bowel cleansing. World J Gastroenterol. 2014 Nov 14;20:15845-51. View abstract.
  22. Heaney RP, Recker RR, Watson P, Lappe JM. Phosphate and carbonate salts of calcium support robust bone building in osteoporosis. Am J Clin Nutr. 2010 Jul;92:101-5. View abstract.
  23. Ell C, Fischbach W, Layer P, Halphen M. Randomized, controlled trial of 2 L polyethylene glycol plus ascorbate components versus sodium phosphate for bowel cleansing prior to colonoscopy for cancer screening. Curr Med Res Opin. 2014 Dec;30:2493-503. View abstract.
  24. Buck CL, Henry T, Guelfi K, Dawson B, McNaughton LR, Wallman K. Effects of sodium phosphate and beetroot juice supplementation on repeated-sprint ability in females. Eur J Appl Physiol. 2015 Oct;115:2205-13. View abstract.
  25. Buck C, Guelfi K, Dawson B, McNaughton L, Wallman K. Effects of sodium phosphate and caffeine loading on repeated-sprint ability. J Sports Sci. 2015;33:1971-9. View abstract.
  26. Brewer CP, Dawson B, Wallman KE, Guelfi KJ. Effect of sodium phosphate supplementation on repeated high-intensity cycling efforts. J Sports Sci. 2015;33:1109-16. View abstract.
  27. Folland, JP, Stern, R, and Brickley, G. Sodium phosphate loading improves laboratory cycling time-trial performance in trained cyclists. J Sci Med Sport 2008;11:464-8. View abstract.
  28. Fisher, JN and Kitabchi, AE. A randomized study of phosphate therapy in the treatment of diabetic ketoacidosis. J Clin Endocrinol Metab 1983;57:177-80. View abstract.
  29. Terlevich A, Hearing SD, Woltersdorf WW, et al. Refeeding syndrome: effective and safe treatment with Phosphates Polyfusor. Aliment Pharmacol Ther 2003;17:1325-9. View abstract.
  30. Savica, V, Calo, LA, Monardo, P, et al. Salivary phosphorus and phosphate content of beverages: implications for the treatment of uremic hyperphosphatemia. J Ren Nutr 2009;19:69-72. View abstract.
  31. Hu, S, Shearer, GC, Steffes, MW, Harris, WS, and Bostom, AG. Once-daily extended-release niacin lowers serum phosphorus concentrations in patients with metabolic syndrome dyslipidemia. Am J Kidney Dis 2011;57:181-2. View abstract.
  32. Schaiff, RA, Hall, TG, and Bar, RS. Medical treatment of hypercalcemia. Clin Pharm 1989;8:108-21. View abstract.
  33. Elliott, GT and McKenzie, MW. Treatment of hypercalcemia. Drug Intell Clin Pharm 1983;17:12-22. View abstract.
  34. Bugg, NC and Jones, JA. Hypophosphataemia. Pathophysiology, effects and management on the intensive care unit. Anaesthesia 1998;53:895-902. View abstract.
  35. OsmoPrep Prescribing information. Salix Pharmaceuticals, Raleigh, NC. October 2012. (http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/021892s006lbl.pdf, accessed 02/24/15).
  36. FDA OTC ingredients list, April 2010. Available at: www.fda.gov/downloads/AboutFDA/CentersOffices/CDER/UCM135691.pdf (accessed 2/7/15).
  37. Finkelstein JS, Klibanski A, Arnold AL, et al. Prevention of estrogen deficiency-related bone loss with human parathyroid hormone-(1-34): a randomized controlled trial. JAMA 1998;280:1067-73. View abstract.
  38. Winer KK, Ko CW, Reynolds JC, et al. Long-term treatment of hypoparathyroidism: A randomized controlled study comparing parathyroid hormone (1-34) versus calcitriol and calcium. J Clin Endocrinol Metab 2003;88:4214-20. View abstract.
  39. Lindsay R, Nieves J, Formica C, et al. Randomized controlled study of the effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet 1997;350:550-5. View abstract.
  40. Winer KK, Yanovski JA, Cutler GB Jr. Synthetic human parathyroid hormone 1-34 vs calcitriol and calcium in the treatment of hypoparathyroidism. JAMA 1996;276:631-6. View abstract.
  41. Leung AC, Henderson IS, Halls DJ, Dobbie JW. Aluminium hydroxide versus sucralfate as a phosphate binder in uraemia. Br Med J (Clin Res Ed) 1983;286:1379-81. View abstract.
  42. Roxe DM, Mistovich M, Barch DH. Phosphate-binding effects of sucralfate in patients with chronic renal failure. Am J Kidney Dis 1989;13:194-9. View abstract.
  43. Hergesell O, Ritz E. Phosphate binders on iron basis: a new perspective? Kidney Intl Suppl 1999;73:S42-5. View abstract.
  44. Peters T, Apt L, Ross JF. Effect of phosphates upon iron absorption studied in normal human subjects and in an experimental model using dialysis. Gastroenterology 1971;61:315-22. View abstract.
  45. Monsen ER, Cook JD. Food iron absorption in human subjects IV. The effects of calcium and phosphate salts on the absorption of nonheme iron. Am J Clin Nutr 1976;29:1142-8. View abstract.
  46. Lindsay R, Nieves J, Henneman E, et al. Subcutaneous administration of the amino-terminal fragment of human parathyroid hormone-(1-34): kinetics and biochemical response in estrogenized osteoporotic patients. J Clin Endocrinol Metab 1993;77:1535-9. View abstract.
  47. Campisi P, Badhwar V, Morin S, Trudel JL. Postoperative hypocalcemic tetany caused by Fleet Phospho-Soda preparation in a patient taking alendronate sodium. Dis Colon Rectum 1999;42:1499-501. View abstract.
  48. Loghman-Adham M. Safety of new phosphate binders for chronic renal failure. Drug Saf 2003;26:1093-115. View abstract.
  49. Schiller LR, Santa Ana CA, Sheikh MS, et al. Effect of the time of administration of calcium acetate on phosphorus binding. New Engl J Med 1989;320:1110-3. View abstract.
  50. Saadeh G, Bauer T, Licata A, Sheeler L. Antacid-induced osteomalacia. Cleve Clin J Med 1987;54:214-6. View abstract.
  51. Gregory JF. Case study: folate bioavailability. J Nutr 2001;131:1376S-1382S.. View abstract.
  52. Insogna KL, Bordley DR, Caro JF, Lockwood DH. Osteomalacia and weakness from excessive antacid ingestion. JAMA 1980;244:2544-6. View abstract.
  53. Heaney RP, Nordin BE. Calcium effects on phosphorus absorption: implications for the prevention and co-therapy of osteoporosis. J Am Coll Nutr 2002;21:239-44.. View abstract.
  54. Rosen GH, Boullata JI, O'Rangers EA, et al. Intravenous phosphate repletion regimen for critically ill patients with moderate hypophosphatemia. Crit Care Med 1995;23:1204-10. View abstract.
  55. Perreault MM, Ostrop NJ, Tierney MG. Efficacy and safety of intravenous phosphate replacement in critically ill patients. Ann Pharmacother 1997;31:683-8. View abstract.
  56. Duffy DJ, Conlee RK. Effects of phosphate loading on leg power and high intensity treadmill exercise. Med Sci Sports Exerc 1986;18:674-7. View abstract.
  57. Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington, DC: National Academy Press, 1999. Available at: http://books.nap.edu/books/0309063507/html/index.html.
  58. Carey CF, Lee HH, Woeltje KF (eds). Washington Manual of Medical Therapeutics. 29th ed. New York, NY: Lippincott-Raven, 1998.
  59. Alvarez-Arroyo MV, Traba ML, Rapado TA, et al. Correlation between 1.25 dihydroxyvitamin D serum levels and fractional rate of intestinal calcium absorption in hypercalciuric nephrolithiasis. Role of phosphate. Urol Res 1992;20:96-7. View abstract.
  60. Heaton KW, Lever JV, Barnard RE. Osteomalacia associated with cholestyramine therapy for post-ileectomy diarrhea. Gastroenterology 1972;62:642-6. View abstract.
  61. Becker GL. The case against mineral oil. Am J Digestive Dis 1952;19:344-8. View abstract.
  62. Schwarz KB, Goldstein PD, Witztum JL, et al. Fat-soluble vitamin concentrations in hypercholestrolemic children treated with colestipol. Pediatrics 1980;65:243-50. View abstract.
  63. West RJ, Lloyd JK. The effect of cholestyramine on intestinal absorption. Gut 1975;16:93-8. View abstract.
  64. Spencer H, Menaham L. Adverse effects of aluminum-containing antacids on mineral metabolism. Gastroenterology 1979;76:603-6. View abstract.
  65. Roberts DH, Knox FG. Renal phosphate handling and calcium nephrolithiasis: role of dietary phosphate and phosphate leak. Semin Nephrol 1990;10:24-30. View abstract.
  66. Harmelin DL, Martin FR, Wark JD. Antacid-induced phosphate depletion syndrome presenting as nephrolithiasis. Aust NZ J Med 1990;20:803-5. View abstract.
  67. Yates AA, Schlicker SA, Suitor CW. Dietary reference intakes: The new basis for recommendations for calcium and related nutrients, B vitamins, and choline. J Am Diet Assoc 1998;98:699-706. View abstract.
  68. Fauci AS, Braunwald E, Isselbacher KJ, et al. Harrison's Principles of Internal Medicine, 14th ed. New York, NY: McGraw-Hill, 1998.
  69. Shils ME, Olson JA, Shike M, Ross AC, eds. Modern Nutrition in Health and Disease. 9th ed. Baltimore, MD: Williams & Wilkins, 1999.
  70. Galloway SD, Tremblay MS, Sexsmith JR, Roberts CJ. The effects of acute phosphate supplementation in subjects of different aerobic fitness levels. Eur J Appl Physiol Occup Physiol 1996;72:224-30. View abstract.
  71. Helikson MA, Parham WA, Tobias JD. Hypocalcemia and hyperphosphatemia after phosphate enema use in a child. J Pediatr Surg 1997;32:1244-6. View abstract.
  72. DiPalma JA, Buckley SE, Warner BA, et al. Biochemical effects of oral sodium phosphate. Dig Dis Sci 1996;41:749-53. View abstract.
  73. Fine A, Patterson J. Severe hyperphosphatemia following phosphate administration for bowel preparation in patients with renal failure: two cases and a review of the literature. Am J Kidney Dis 1997;29:103-5. View abstract.
  74. Clarkston WK, Tsen TN, Dies DF, et al. Oral sodium phosphate versus sulfate-free polyethylene glycol electrolyte lavage solution in outpatient preparation for colonoscopy: a prospective comparison. Gastrointest Endosc 1996;43:42-8. View abstract.
  75. Hill AG, Teo W, Still A, et al. Cellular potassium depletion predisposes to hypokalaemia after oral sodium phosphate. Aust N Z J Surg 1998;68:856-8. View abstract.
  76. Heller HJ, Reza-Albarran AA, Breslau NA, Pak CY. Sustained reduction in urinary calcium during long-term treatment with slow release neutral potassium phosphate in absorptive hypercalciuria. J Urol 1998;159:1451-5; discussion 1455-6. View abstract.
  77. Hardman JG, Limbird LL, Molinoff PB, eds. Goodman and Gillman's The Pharmacological Basis of Therapeutics, 9th ed. New York, NY: McGraw-Hill, 1996.
  78. Young DS. Effects of Drugs on Clinical Laboratory Tests 4th ed. Washington: AACC Press, 1995.
  79. McEvoy GK, ed. AHFS Drug Information. Bethesda, MD: American Society of Health-System Pharmacists, 1998.
  80. Monographs on the medicinal uses of plant drugs. Exeter, UK: European Scientific Co-op Phytother, 1997.
Last reviewed - 01/24/2018