Skip navigation

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

URL of this page: https://medlineplus.gov/genetics/condition/succinyl-coa3-ketoacid-coa-transferase-deficiency/

Succinyl-CoA:3-ketoacid CoA transferase deficiency

Description

Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is an inherited disorder that impairs the body's ability to break down ketones, which are molecules produced in the liver during the breakdown of fats.

The signs and symptoms of SCOT deficiency typically appear within the first few years of life. Affected individuals experience episodes of extreme tiredness (lethargy), appetite loss, vomiting, rapid breathing, and, occasionally, seizures. These episodes, which are called ketoacidotic attacks, sometimes lead to coma. About half of affected individuals have a ketoacidotic attack within the first 4 days of life. Affected individuals have no symptoms of the disorder between ketoacidotic attacks.

People with SCOT deficiency usually have a permanently elevated level of ketones in their blood (persistent ketosis). If the level of ketones gets too high, which can be brought on by infections, fevers, or periods without food (fasting), a ketoacidotic attack can occur. The frequency of ketoacidotic attacks varies among affected individuals.

Frequency

The prevalence of SCOT deficiency is unknown. More than 20 cases of this condition have been reported in the scientific literature.

Causes

Mutations in the OXCT1 gene cause SCOT deficiency. The OXCT1 gene provides instructions for making an enzyme called succinyl-CoA:3-ketoacid CoA transferase (SCOT). The SCOT enzyme is made in the energy-producing centers of cells (mitochondria). The enzyme plays a role in the breakdown of ketones, which are an important source of energy during fasting or when energy demands are increased, such as during illness or when exercising.

OXCT1 gene mutations result in the production of a SCOT enzyme with little or no function. A reduction in the amount of functional enzyme leads to an inability to break down ketones, resulting in decreased energy production and an elevated level of ketones in the blood. If these signs become severe, a ketoacidotic attack can occur. Individuals with mutations that create an enzyme with partial function are still prone to ketoacidotic attacks, but are less likely to have persistent ketosis.

Inheritance

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

  • 3-oxoacid CoA transferase deficiency
  • Ketoacidosis due to SCOT deficiency
  • SCOT deficiency
  • Succinyl-CoA 3-oxoacid transferase deficiency
  • Succinyl-CoA:3-oxoacid CoA transferase deficiency
  • Succinyl-CoA:acetoacetate transferase deficiency

Additional Information & Resources

Genetic and Rare Diseases Information Center

Patient Support and Advocacy Resources

Clinical Trials

Catalog of Genes and Diseases from OMIM

Scientific Articles on PubMed

References

  • Berry GT, Fukao T, Mitchell GA, Mazur A, Ciafre M, Gibson J, Kondo N, Palmieri MJ. Neonatal hypoglycaemia in severe succinyl-CoA: 3-oxoacid CoA-transferase deficiency. J Inherit Metab Dis. 2001 Oct;24(5):587-95. doi: 10.1023/a:1012419911789. Citation on PubMed
  • Fukao T, Ishii T, Amano N, Kursula P, Takayanagi M, Murase K, Sakaguchi N, Kondo N, Hasegawa T. A neonatal-onset succinyl-CoA:3-ketoacid CoA transferase (SCOT)-deficient patient with T435N and c.658-666dupAACGTGATT p.N220_I222dup mutations in the OXCT1 gene. J Inherit Metab Dis. 2010 Dec;33 Suppl 3:S307-13. doi: 10.1007/s10545-010-9168-5. Epub 2010 Jul 21. Citation on PubMed
  • Fukao T, Mitchell GA, Song XQ, Nakamura H, Kassovska-Bratinova S, Orii KE, Wraith JE, Besley G, Wanders RJ, Niezen-Koning KE, Berry GT, Palmieri M, Kondo N. Succinyl-CoA:3-ketoacid CoA transferase (SCOT): cloning of the human SCOT gene, tertiary structural modeling of the human SCOT monomer, and characterization of three pathogenic mutations. Genomics. 2000 Sep 1;68(2):144-51. doi: 10.1006/geno.2000.6282. Citation on PubMed
  • Fukao T, Sass JO, Kursula P, Thimm E, Wendel U, Ficicioglu C, Monastiri K, Guffon N, Baric I, Zabot MT, Kondo N. Clinical and molecular characterization of five patients with succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency. Biochim Biophys Acta. 2011 May;1812(5):619-24. doi: 10.1016/j.bbadis.2011.01.015. Epub 2011 Feb 2. Citation on PubMed
  • Fukao T, Shintaku H, Kusubae R, Zhang GX, Nakamura K, Kondo M, Kondo N. Patients homozygous for the T435N mutation of succinyl-CoA:3-ketoacid CoA Transferase (SCOT) do not show permanent ketosis. Pediatr Res. 2004 Dec;56(6):858-63. doi: 10.1203/01.PDR.0000145297.90577.67. Epub 2004 Oct 20. Citation on PubMed

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.