Frequency
Myotonia congenita is estimated to affect 1 in 100,000 people worldwide. This condition is more common in northern Scandinavia, where it occurs in approximately 1 in 10,000 people.
Causes
Mutations in the CLCN1 gene cause myotonia congenita. The CLCN1 gene provides instructions for making a protein that is critical for the normal function of skeletal muscle cells. For the body to move normally, skeletal muscles must tense (contract) and relax in a coordinated way. Muscle contraction and relaxation are controlled by the flow of charged atoms (ions) into and out of muscle cells. Specifically, the protein produced from the CLCN1 gene forms a channel that controls the flow of negatively charged chlorine atoms (chloride ions) into these cells. The main function of this channel is to stabilize the cells' electrical charge, which prevents muscles from contracting abnormally.
Mutations in the CLCN1 gene alter the usual structure or function of chloride channels. The altered channels cannot properly regulate ion flow, reducing the movement of chloride ions into skeletal muscle cells. This disruption in chloride ion flow triggers prolonged muscle contractions, which are the hallmark of myotonia.
Inheritance
The two forms of myotonia congenita have different patterns of inheritance. Thomsen disease is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In most cases, an affected person has one parent with the condition.
Becker disease is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. Most often, the parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but do not show signs and symptoms of the condition.
Because several CLCN1 mutations can cause either Becker disease or Thomsen disease, doctors usually rely on characteristic signs and symptoms to distinguish the two forms of myotonia congenita.
Other Names for This Condition
- Congenital myotonia
Additional Information & Resources
Genetic and Rare Diseases Information Center
Patient Support and Advocacy Resources
Clinical Trials
Catalog of Genes and Diseases from OMIM
Scientific Articles on PubMed
References
- Chrestian N, Puymirat J, Bouchard JP, Dupre N. Myotonia congenita--a cause of muscle weakness and stiffness. Nat Clin Pract Neurol. 2006 Jul;2(7):393-9; quiz following 399. doi: 10.1038/ncpneuro0239. Citation on PubMed
- Colding-Jorgensen E. Phenotypic variability in myotonia congenita. Muscle Nerve. 2005 Jul;32(1):19-34. doi: 10.1002/mus.20295. Citation on PubMed
- Duno M, Vissing J. Myotonia Congenita. 2005 Aug 3 [updated 2021 Feb 25]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews(R) [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. Available from http://www.ncbi.nlm.nih.gov/books/NBK1355/ Citation on PubMed
- Pusch M. Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum Mutat. 2002 Apr;19(4):423-34. doi: 10.1002/humu.10063. Citation on PubMed
- Sun C, Tranebjaerg L, Torbergsen T, Holmgren G, Van Ghelue M. Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia. Eur J Hum Genet. 2001 Dec;9(12):903-9. doi: 10.1038/sj.ejhg.5200736. Erratum In: Eur J Hum Genet. 2010 Feb;18(2):264. Citation on PubMed
- Zhang J, George AL Jr, Griggs RC, Fouad GT, Roberts J, Kwiecinski H, Connolly AM, Ptacek LJ. Mutations in the human skeletal muscle chloride channel gene (CLCN1) associated with dominant and recessive myotonia congenita. Neurology. 1996 Oct;47(4):993-8. doi: 10.1212/wnl.47.4.993. Citation on PubMed
The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.