Frequency
CADASIL is likely a rare condition; however, its prevalence is unknown.
Causes
Mutations in the NOTCH3 gene cause CADASIL. The NOTCH3 gene provides instructions for producing the Notch3 receptor protein, which is important for the normal function and survival of vascular smooth muscle cells. When certain molecules attach (bind) to Notch3 receptors, the receptors send signals to the nucleus of the cell. These signals then turn on (activate) particular genes within vascular smooth muscle cells.
NOTCH3 gene mutations lead to the production of an abnormal Notch3 receptor protein that impairs the function and survival of vascular smooth muscle cells. Disruption of Notch3 functioning can lead to the self-destruction (apoptosis) of these cells. In the brain, the loss of vascular smooth muscle cells results in blood vessel damage that can cause the signs and symptoms of CADASIL.
Inheritance
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered NOTCH3 gene in each cell is sufficient to cause the disorder.
In most cases, an affected person inherits the mutation from one affected parent. A few rare cases may result from new mutations in the NOTCH3 gene. These cases occur in people with no history of the disorder in their family.
Other Names for This Condition
- CADASIL
- Cerebral arteriopathy with subcortical infarcts and leukoencephalopathy
- Familial vascular leukoencephalopathy
- Hereditary dementia, multi-infarct type
Additional Information & Resources
Genetic and Rare Diseases Information Center
Patient Support and Advocacy Resources
Clinical Trials
Catalog of Genes and Diseases from OMIM
Scientific Articles on PubMed
References
- Buffon F, Porcher R, Hernandez K, Kurtz A, Pointeau S, Vahedi K, Bousser MG, Chabriat H. Cognitive profile in CADASIL. J Neurol Neurosurg Psychiatry. 2006 Feb;77(2):175-80. doi: 10.1136/jnnp.2005.068726. Citation on PubMed or Free article on PubMed Central
- Dichgans M. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: phenotypic and mutational spectrum. J Neurol Sci. 2002 Nov 15;203-204:77-80. doi: 10.1016/s0022-510x(02)00270-8. Citation on PubMed
- Haritunians T, Boulter J, Hicks C, Buhrman J, DiSibio G, Shawber C, Weinmaster G, Nofziger D, Schanen C. CADASIL Notch3 mutant proteins localize to the cell surface and bind ligand. Circ Res. 2002 Mar 22;90(5):506-8. doi: 10.1161/01.res.0000013796.73742.c8. Citation on PubMed or Free article on PubMed Central
- Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cecillion M, Marechal E, Maciazek J, Vayssiere C, Cruaud C, Cabanis EA, Ruchoux MM, Weissenbach J, Bach JF, Bousser MG, Tournier-Lasserve E. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. 1996 Oct 24;383(6602):707-10. doi: 10.1038/383707a0. Citation on PubMed
- Kalaria RN, Viitanen M, Kalimo H, Dichgans M, Tabira T; CADASIL Group of Vas-Cog. The pathogenesis of CADASIL: an update. J Neurol Sci. 2004 Nov 15;226(1-2):35-9. doi: 10.1016/j.jns.2004.09.008. Citation on PubMed
- Louvi A, Arboleda-Velasquez JF, Artavanis-Tsakonas S. CADASIL: a critical look at a Notch disease. Dev Neurosci. 2006;28(1-2):5-12. doi: 10.1159/000090748. Citation on PubMed
- Opherk C, Peters N, Herzog J, Luedtke R, Dichgans M. Long-term prognosis and causes of death in CADASIL: a retrospective study in 411 patients. Brain. 2004 Nov;127(Pt 11):2533-9. doi: 10.1093/brain/awh282. Epub 2004 Sep 13. Citation on PubMed
- Rufa A, Guideri F, Acampa M, Cevenini G, Bianchi S, De Stefano N, Stromillo ML, Federico A, Dotti MT. Cardiac autonomic nervous system and risk of arrhythmias in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Stroke. 2007 Feb;38(2):276-80. doi: 10.1161/01.STR.0000254530.38417.07. Epub 2007 Jan 11. Citation on PubMed
The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.