Skip navigation

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

URL of this page:

Brody myopathy


Brody myopathy is a condition that affects the skeletal muscles, which are the muscles used for movement. Affected individuals experience muscle cramping and stiffening after exercise or other strenuous activity, especially in cold temperatures. These symptoms typically begin in childhood. They are usually painless, but in some cases can cause mild discomfort. The muscles usually relax after a few minutes of rest. Most commonly affected are the muscles of the arms, legs, and face (particularly the eyelids).

In some people with Brody myopathy, exercise leads to the breakdown of muscle tissue (rhabdomyolysis). The destruction of muscle tissue releases a protein called myoglobin, which is processed by the kidneys and released in the urine (myoglobinuria). Myoglobin causes the urine to be red or brown.


Brody myopathy is a rare condition, although its exact prevalence is unknown.


Mutations in the ATP2A1 gene cause Brody myopathy. The ATP2A1 gene provides instructions for making an enzyme called sarco(endo)plasmic reticulum calcium-ATPase 1 (SERCA1). The SERCA1 enzyme is found in skeletal muscle cells, specifically in the membrane of a structure called the sarcoplasmic reticulum. This structure plays a major role in muscle contraction and relaxation by storing and releasing positively charged calcium atoms (calcium ions). When calcium ions are transported out of the sarcoplasmic reticulum, muscles contract; when calcium ions are transported into the sarcoplasmic reticulum, muscles relax. The SERCA1 enzyme transports calcium ions from the cell into the sarcoplasmic reticulum, triggering muscle relaxation.

ATP2A1 gene mutations lead to the production of a SERCA1 enzyme with decreased or no function. As a result, calcium ions are slow to enter the sarcoplasmic reticulum and muscle relaxation is delayed. After exercise or strenuous activity, during which the muscles rapidly contract and relax, people with Brody myopathy develop muscle cramps because their muscles cannot fully relax.


Brody myopathy is usually inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. Some people with autosomal recessive Brody myopathy do not have an identified mutation in the ATP2A1 gene; the cause of the disease in these individuals is unknown.

Other Names for This Condition

  • Brody disease

Additional Information & Resources

Genetic Testing Information

Genetic and Rare Diseases Information Center

Patient Support and Advocacy Resources

Catalog of Genes and Diseases from OMIM

Scientific Articles on PubMed


  • Novelli A, Valente EM, Bernardini L, Ceccarini C, Sinibaldi L, Caputo V, Cavalli P, Dallapiccola B. Autosomal dominant Brody disease cosegregates with a chromosomal (2;7)(p11.2;p12.1) translocation in an Italian family. Eur J Hum Genet. 2004 Jul;12(7):579-83. doi: 10.1038/sj.ejhg.5201200. Citation on PubMed
  • Odermatt A, Barton K, Khanna VK, Mathieu J, Escolar D, Kuntzer T, Karpati G, MacLennan DH. The mutation of Pro789 to Leu reduces the activity of the fast-twitch skeletal muscle sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1) and is associated with Brody disease. Hum Genet. 2000 May;106(5):482-91. doi: 10.1007/s004390000297. Citation on PubMed
  • Odermatt A, Taschner PE, Khanna VK, Busch HF, Karpati G, Jablecki CK, Breuning MH, MacLennan DH. Mutations in the gene-encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Nat Genet. 1996 Oct;14(2):191-4. doi: 10.1038/ng1096-191. Citation on PubMed
  • Vattemi G, Gualandi F, Oosterhof A, Marini M, Tonin P, Rimessi P, Neri M, Guglielmi V, Russignan A, Poli C, van Kuppevelt TH, Ferlini A, Tomelleri G. Brody disease: insights into biochemical features of SERCA1 and identification of a novel mutation. J Neuropathol Exp Neurol. 2010 Mar;69(3):246-52. doi: 10.1097/NEN.0b013e3181d0f7d5. Citation on PubMed

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.