Frequency
Acromicric dysplasia is a rare disorder; its prevalence is unknown.
Causes
Acromicric dysplasia is caused by mutations in the FBN1 gene, which provides instructions for making a large protein called fibrillin-1. This protein is transported out of cells into the extracellular matrix, which is an intricate lattice of proteins and other molecules that forms in the spaces between cells. In this matrix, molecules of fibrillin-1 attach (bind) to each other and to other proteins to form threadlike filaments called microfibrils. The microfibrils become part of the fibers that provide strength and flexibility to connective tissues, which support the bones, skin, and other tissues and organs. Additionally, microfibrils store molecules called growth factors, including transforming growth factor beta (TGF-β), and release them at various times to control the growth and repair of tissues and organs throughout the body.
Most of the FBN1 gene mutations that cause acromicric dysplasia change single protein building blocks in the fibrillin-1 protein. The mutations result in a reduction and disorganization of the microfibrils. Without enough normal microfibrils to store TGF-β, the growth factor is abnormally active. These effects likely contribute to the physical abnormalities that occur in acromicric dysplasia, but the mechanisms are unclear.
Inheritance
Acromicric dysplasia is an autosomal dominant condition, which means one copy of the altered gene in each cell is sufficient to cause the disorder. Most cases result from new mutations in the gene and occur in people with no history of the disorder in their family. In other cases, an affected person inherits the mutation from one affected parent.
Other Names for This Condition
- ACMICD
Additional Information & Resources
Genetic Testing Information
Genetic and Rare Diseases Information Center
Patient Support and Advocacy Resources
Catalog of Genes and Diseases from OMIM
Scientific Articles on PubMed
References
- Faivre L, Le Merrer M, Baumann C, Polak M, Chatelain P, Sulmont V, Cousin J, Bost M, Cordier MP, Zackai E, Russell K, Finidori G, Pouliquen JC, Munnich A, Maroteaux P, Cormier-Daire V. Acromicric dysplasia: long term outcome and evidence of autosomal dominant inheritance. J Med Genet. 2001 Nov;38(11):745-9. doi: 10.1136/jmg.38.11.745. Citation on PubMed or Free article on PubMed Central
- Klein C, Le Goff C, Topouchian V, Odent S, Violas P, Glorion C, Cormier-Daire V. Orthopedics management of acromicric dysplasia: follow up of nine patients. Am J Med Genet A. 2014 Feb;164A(2):331-7. doi: 10.1002/ajmg.a.36139. Epub 2013 Dec 11. Citation on PubMed
- Le Goff C, Mahaut C, Wang LW, Allali S, Abhyankar A, Jensen S, Zylberberg L, Collod-Beroud G, Bonnet D, Alanay Y, Brady AF, Cordier MP, Devriendt K, Genevieve D, Kiper PO, Kitoh H, Krakow D, Lynch SA, Le Merrer M, Megarbane A, Mortier G, Odent S, Polak M, Rohrbach M, Sillence D, Stolte-Dijkstra I, Superti-Furga A, Rimoin DL, Topouchian V, Unger S, Zabel B, Bole-Feysot C, Nitschke P, Handford P, Casanova JL, Boileau C, Apte SS, Munnich A, Cormier-Daire V. Mutations in the TGFbeta binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias. Am J Hum Genet. 2011 Jul 15;89(1):7-14. doi: 10.1016/j.ajhg.2011.05.012. Epub 2011 Jun 16. Citation on PubMed or Free article on PubMed Central
The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.