URL of this page: https://medlineplus.gov/druginfo/natural/891.html


What is it?

Bifidobacteria are a group of bacteria that normally live in the intestines. They can be grown outside the body and then taken by mouth as medicine.

Bifidobacteria are commonly used for diarrhea, constipation, an intestinal disorder called irritable bowel syndrome, for preventing the common cold or flu, and lots of other conditions, but there is no good scientific evidence to support many of these uses.

How effective is it?

Natural Medicines Comprehensive Database rates effectiveness based on scientific evidence according to the following scale: Effective, Likely Effective, Possibly Effective, Possibly Ineffective, Likely Ineffective, Ineffective, and Insufficient Evidence to Rate.

The effectiveness ratings for BIFIDOBACTERIA are as follows:

Possibly effective for...

  • Constipation. Early research shows that taking the bifidobacteria species Bifidobacterium breve can reduce constipation in children. Other research shows that taking Bifidobacterium animalis subsp. lactis BB-12 reduces constipation in adults with mild constipation. Some research shows that taking Bifidobacterium longum BB536 reduces constipation in some adults. But conflicting results exist.
  • Helicobacter pylori (H. pylori) infection. Taking probiotics containing bifidobacteria and lactobacilli bacteria can reduce side effects such as diarrhea and taste disturbances caused by medication used to treat Helicobacter pylori infections.
  • Irritable bowel syndrome (IBS). Taking probiotics appears to help with symptoms of IBS. However, the specific type of probiotic might be important. Taking the bifidobacteria species Bifidobacterium infantis 35624 (Align or Bifantis, Proctor & Gamble) for 8 weeks can reduce symptoms of IBS. Also, taking a specific product containing species of Bifidobacterium, Lactobacillus, and Streptococcus (VSL#3) seems to decrease bloating in people with IBS. However, taking a combination of Lactobacillus paracasei subsp. paracasei, Lactobacillus acidophilus La5, and Bifidobacterium lactis BB-12 does not improve IBS symptoms.
  • A complication after surgery for ulcerative colitis called pouchitis. Taking a specific product containing a combination of Bifidobacterium, Lactobacillus, and Streptococcus (VSL#3) by mouth seems to help prevent pouchitis after surgery for ulcerative colitis.
  • Airway infections. Research shows that using probiotics containing bifidobacteria might help prevent airway infections such as the common cold in otherwise healthy people. But the specific type of probiotic seems be important. Some research shows that taking Bifidobacterium bifidum reduces the number of college students who experience a cold or the flu. But taking Bifidobacterium longum subsp. infantis doesn't seem to work in these people. Other research shows that taking a combination product containing Lactobacillus acidophilus and Bifidobacterium (HOWARU Protect) with milk helps prevent cold and flu symptoms in young children who attend day-care centers. Another study shows that taking a product containing Lactobacillus acidophilus and Bifidobacterium bifidum (Infloran, Berna) reduces the risk of colds in school-aged children. But taking the bifidobacteria species Bifidobacterium animalis subsp. lactis does not reduce the risk of airway infections in hospitalized children and teens.
  • Diarrhea in infants (rotaviral diarrhea).Taking Bifidobacterium bifidum seems to help prevent rotaviral diarrhea when used with other bacteria such as Streptococcus thermophiles or Bifidobacterium animalis subsp. lactis BB-12.
  • Traveler's diarrhea. Taking Bifidobacterium seems to help prevent traveler's diarrhea when used with other bacteria such as Lactobacillus acidophilus, Lactobacillus bulgaricus, or Streptococcus thermophilus.
  • Ulcerative colitis. Research shows that taking specific products containing combinations of Bifidobacterium, Lactobacillus, and Streptococcus (VSL#3) or Bifidobacterium breve, Bifidobacterium bifidum, and Lactobacillus acidophilus (Yakult Co., Japan) helps control symptoms and prevent their recurrence in people with ulcerative colitis.

Possibly ineffective for...

  • Diarrhea caused by antibiotics. A large study shows that taking a combination of Bifidobacterium bifidum, Bifidobacterium lactis, and Lactobacillus acidophilus does not prevent diarrhea in people taking various antibiotics such as penicillin. Also, taking Bifidobacterium longum does not seem to prevent diarrhea in people taking the antibiotic clindamycin. But one early study shows that taking Bifidobacterium longum reduces stool frequency and stomach discomfort in people taking the antibiotic erythromycin.
  • Diarrhea due to an infection with the bacteria Clostridium difficile. A large study shows that taking a combination of Bifidobacterium bifidum, Bifidobacterium lactis, and Lactobacillus acidophilus does not reduce diarrhea in elderly people with Clostridium difficile infection.
  • Mortality of premature babies. Adding Bifidobacterium breve to infant formula does not reduce the risk of death in premature babies.
  • Infant development. Giving formula containing Bifidobacterium longum BL999 plus prebiotics, or giving Bifidobacterium longum BB536 plus Lactobacillus rhamnosus or Lactobacillus paracasei, does not seem to improve growth in infants.
  • Blood infection (sepsis). Adding Bifidobacterium breve to infant formula does not reduce the risk of sepsis in premature babies.

Insufficient evidence to rate effectiveness for...

  • Scaly, itchy skin (eczema). Some research shows that giving Bifidobacterium animalis subsp. lactis BB-12 by mouth reduces eczema severity in infants. However, giving Bifidobacterium longum BL999 along with Lactobacillus rhamnosus does not seem to prevent eczema in infants with a family history of the condition.
  • Celiac disease. In children with newly diagnosed celiac disease, taking Bifidobacterium longum CECT 7347 as part of a gluten-free diet does not improve stomach and intestinal symptoms compared to diet alone.
  • Infections related to chemotherapy treatment. Early research shows that taking specific products containing Bifidobacterium longum and Lactobacillus acidophilus (Morinaga Bifidus) or Bifidobacterium infantis, Lactobacillus acidophilus, and Enterococcus faecalis (Levenin) does not prevent yeast infections in people with leukemia who are undergoing chemotherapy.
  • High cholesterol. Early research shows that drinking milk containing Lactobacillus acidophilus 145 and Bifidobacterium longum BB536 reduces "bad" low-density lipoprotein (LDL) cholesterol in people with high cholesterol. But it also seems to reduce "good" high-density lipoprotein (HDL) cholesterol.
  • Japanese cedar pollen allergy. Some research shows that taking Bifidobacterium longum BB536 during pollen season might reduce nose and eye symptoms of Japanese cedar pollen allergy. But conflicting results exists. Also, this strain of bifidobacteria does not seem to reduce sneezing or throat symptoms associated with Japanese cedar pollen allergy.
  • A type of infection in the lining of the intestine caused by bacteria (necrotizing enterocolitis; NEC). One study shows that taking Bifidobacterium infantis along with Lactobacillus acidophilus helps prevent NEC in critically ill infants. But giving formula containing Bifidobacterium breve BBG-001 to premature infants does not help prevent NEC.
  • Preventing infections after exposure to radiation. Early research shows that antibiotic-resistant Bifidobacterium longum can help improve short-term survival in the treatment of radiation sickness. In combination with antibiotics, bifidobacteria appear to help prevent dangerous bacteria from growing and causing a serious infection.
  • Aging.
  • Breast pain, possibly due to infection (mastitis).
  • Cancer.
  • Lactose intolerance.
  • Liver problems.
  • Lyme disease.
  • Mumps.
  • Replacing beneficial bacteria removed by diarrhea.
  • Stomach problems.
  • Other conditions.
More evidence is needed to rate bifidobacteria for these uses.

How does it work?

Bifidobacteria belong to a group of bacteria called lactic acid bacteria. Lactic acid bacteria are found in fermented foods like yogurt and cheese. Bifidobacteria are used in treatment as so-called "probiotics," the opposite of antibiotics. They are considered "friendly" bacteria and are taken to grow and multiply in areas of the body where they normally would occur. The human body counts on its normal bacteria to perform several jobs, including breaking down foods, helping the body take in nutrients, and preventing the take-over of "bad" bacteria. Probiotics such as bifidobacteria are typically used in cases when a disease occurs or might occur due to a kill-off of normal bacteria. For example, treatment with antibiotics can destroy disease-causing bacteria, but also normal bacteria in the GI (gastrointestinal) and urinary tracts. The theory is that taking Bifidobacterium probiotics during antibiotic treatment can prevent or minimize the death of good bacteria and the take-over by bad bacteria.

Are there safety concerns?

Bifidobacteria are LIKELY SAFE for adults and children when taken by mouth appropriately. In some people, treatment with bifidobacteria might upset the stomach and intestine, causing diarrhea, bloating and gas.

Special precautions & warnings:

Pregnancy and breast-feeding: There is not enough reliable information about the safety of taking bifidobacteria if you are pregnant or breast-feeding. Stay on the safe side and avoid use.

Weakened immune system: There is some concern that "probiotics" might grow too well in people with a weak immune system and cause infections. Although this has not occurred specifically with bifidobacteria, there have been rare cases involving other probiotic species such as Lactobacillus. If you have a weakened immune system (e.g., you have HIV/AIDS or are undergoing cancer treatment), check with your healthcare provider before using bifidobacteria.

Are there interactions with medications?

Be cautious with this combination.
Antibiotic drugs
Antibiotics are used to reduce harmful bacteria in the body. Antibiotics can also reduce friendly bacteria in the body. Bifidobacteria are a type of friendly bacteria. Taking antibiotics along with bifidobacteria might reduce the effectiveness of bifidobacteria. To avoid this interaction, take bifidobacteria products at least two hours before or after antibiotics.

Are there interactions with herbs and supplements?

There are no known interactions with herbs and supplements.

Are there interactions with foods?

There are no known interactions with foods.

What dose is used?

The following doses have been studied in scientific research:


  • For constipation: 1-10 billion cells of Bifidobacterium animalis subsp. lactis BB-12 daily for 4 weeks have been used. 2-20 billion cells of Bifidobacterium longum BB536 daily for 1 week have also been used.
  • For irritable bowel syndrome (IBS): 1 billion cells of Bifidobacterium infantis 35624 (Align or Bifantis) daily in a malted milk drink has been used for 8 weeks. A specific probiotic product containing 450 billion cells of a combination of Bifidobacterium, Lactobacillus, and Streptococcus (VSL#3) has been used for 8 week.
  • For airway infections: 3 billion cells of Bifidobacterium bifidum R0071 have been used daily for 6 weeks.
  • For a complication after surgery for ulcerative colitis called pouchitis: a dose of up to 3 trillion cells consisting of species of Lactobacillus, Bifidobacterium, and Streptococcus (VSL#3) has been given once daily for up to 12 months.
  • For Helicobacter pylori treatment: 5 billion cells of Bifidobacterium lactis and Lactobacillus acidophilus daily for 1 week has been used.
  • For ulcerative colitis:
    • 100 mL per day of a specific fermented milk product (Yakult, Yakult Honsha Co., Ltd.) containing at least 10 billion cells of Bifidobacterium breve, Bifidobacterium bifidum, and Lactobacillus acidophilus strains per dose has been used daily for up to 12 weeks.
    • 3 grams of a specific combination probiotic containing living freeze-dried bacteria species including Lactobacillus, Bifidobacterium, and Streptococcus (VSL#3) has been used twice daily.

  • For constipation: 1-100 billion cells of a specific Bifidobacterium breve powder (Yakult, Yakult Honsha Co., Ltd.) once daily for 4 weeks has been used in children aged 3-16 years.
  • For airway infections: 120 mL of milk containing 5 billion cells each of Lactobacillus acidophilus and Bifidobacterium (HOWARU Protect, Danisco) has been used twice daily in children aged 3-5 years.
  • Diarrhea in infants (rotaviral diarrhea): Bifidobacterium bifidum combined with Streptococcus thermophilus has been used in infants and children up to 3 years-old.
  • Ulcerative colitis: Up to 1.8 trillion cells consisting of species of Lactobacillus, Bifidobacterium, and Streptococcus (VSL#3) has been used daily for up to 1 year in children 1-16 years-old.

Other names

B. Bifidum, B. Breve, B. Infantis, B. lactis, B. Longum, Bifido, Bifido Bacterium Longum, Bifidobacterias, Bifidobactérie, Bifidobactéries, Bifidobacterium, Bifidobacterium adolescentis; Bifidobacterium animalis, Bifidobacterium bifidum; Bifidobacterium breve; Bifidobacterium infantis; Bifidobacterium lactis; Bifidobacterium longum, Bifidum, Bifidus, Bifidus Brevis, Bifidus Infantis, Bifidus Longum, Bifidobacteria Bifidus, Lactobacillus Bifidus, L. Bifidus, Probiotic, Probiotique.


To learn more about how this article was written, please see the Natural Medicines Comprehensive Database methodology.


  1. Søndergaard B, Olsson J, Ohlson K, Svensson U, Bytzer P, Ekesbo R. Effects of probiotic fermented milk on symptoms and intestinal flora in patients with irritable bowel syndrome: a randomized, placebo-controlled trial. Scand J Gastroenterol 2011;46:663-72. View abstract.
  2. Simrén M, Ohman L, Olsson J, et al. Clinical trial: the effects of a fermented milk containing three probiotic bacteria in patients with irritable bowel syndrome - a randomized, double-blind, controlled study. Aliment Pharmacol Ther 2010;31:218-27. View abstract.
  3. O'Callaghan A, van Sinderen D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front Microbiol. 2016 Jun 15;7:925. View abstract.
  4. Olivares M, Castillejo G, Varea V, Sanz Y. Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed coeliac disease. Br J Nutr. 2014 Jul 14;112:30-40. View abstract.
  5. Hojsak I, Tokic Pivac V, Mocic Pavic A, Pasini AM, Kolacek S. Bifidobacterium animalis subsp. lactis fails to prevent common infections in hospitalized children: a randomized, double-blind, placebo-controlled study. Am J Clin Nutr. 2015 Mar;101:680-4. View abstract.
  6. Eskesen D, Jespersen L, Michelsen B, Whorwell PJ, Müller-Lissner S, Morberg CM. Effect of the probiotic strain Bifidobacterium animalis subsp. lactis, BB-12®, on defecation frequency in healthy subjects with low defecation frequency and abdominal discomfort: a randomised, double-blind, placebo-controlled,parallel-group trial. Br J Nutr. 2015 Nov 28;114:1638-46. View abstract.
  7. Costeloe K, Hardy P, Juszczak E, Wilks M, Millar MR; Probiotics in Preterm Infants Study Collaborative Group. Bifidobacterium breve BBG-001 in very preterm infants: a randomised controlled phase 3 trial. Lancet. 2016 Feb 13;387:649-60. View abstract.
  8. Allen SJ, Wareham K, Wang D, Bradley C, Hutchings H, Harris W, Dhar A, Brown H, Foden A, Gravenor MB, Mack D. Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2013 Oct 12;382:1249-57. View abstract.
  9. Roberfroid MB. Prebiotics and probiotics: are they functional foods? Am J Clin Nutr. 2000;71(6 Suppl):1682S-7S; discussion 1688S-90S. View abstract.
  10. Wang ZH, Gao QY, Fang JY. Meta-analysis of the efficacy and safety of Lactobacillus-containing and Bifidobacterium-containing probiotic compound preparation in Helicobacter pylori eradication therapy. J Clin Gastroenterol. 2013;47:25-32. View abstract.
  11. Rerksuppaphol S, Rerksuppaphol L. Randomized controlled trial of probiotics to reduce common cold in schoolchildren. Pediatr Int. 2012;54:682-7. View abstract.
  12. Langkamp-Henken B, Rowe CC, Ford AL, Christman MC, Nieves C Jr, Khouri L,Specht GJ, Girard SA, Spaiser SJ, Dahl WJ. Bifidobacterium bifidum R0071 results in a greater proportion of healthy days and a lower percentage of academically stressed students reporting a day of cold/flu: a randomised, double-blind, placebo-controlled study. Br J Nutr. 2015 14;113:426-34. View abstract.
  13. Begtrup LM, de Muckadell OB, Kjeldsen J, Christensen RD, Jarbøl DE. Long-term treatment with probiotics in primary care patients with irritable bowel syndrome--a randomised, double-blind, placebo controlled trial. Scand J Gastroenterol 2013;48:1127-35. View abstract.
  14. Das RR.Singh M, Shafiq N. Probiotics in Treatment of Allergic Rhinitis. World Allergy Organization Journal 2010;3:239-244.
  15. Seki M, Igarashi T Fukuda Y Simamura S Kaswashima T Ogasa K. The effect of Bifidobacterium cultured milk on the "regularity" among an aged group. Nutr Foodstuff 1978;31:379-387.
  16. Kageyama T, Nakano Y Tomoda T. Comparative Study on Oral Administration of Some Bifidobacterium Preparations. Medicine and Biology(Japan) 1987;115:65-68.
  17. Kageyama T, Tomoda T Nakano Y. The Effect of Bifidobacterium Administration in Patients with Leukemia. Bifidobacteria Microflora. 1984;3:29-33.
  18. Ballongue J, Grill J Baratte-Euloge P. Action sur la flore intestinale de laits fermentés au Bifidobacterium. Lait 1993;73:249-256.
  19. Ogata T, Kingaku M Yaeshima T Teraguchi S Fukuwatari Y Ishibashi N Hayasawa H Fujisawa T Lino H. Effect of Bifidobacterium longum BB536 yogurt administration on the intestinal environment of healthy adults. Microb Ecol Health Dis 1999;11:41-46.
  20. Tomoda T, Nakano Y Kageyama T. Variation in Small Groups of Constant Intestinal Flora during Administration of Anticancer or Immunosuppressive Drugs. Medicine and Biology(Japan) 1981;103:45-49.
  21. Tomoda T, Nakano Y Kageyama T. Intestinal Candida Overgrowth and Candida Infection in Patients with Leukemia: Effect of Bifidobacterium Administration. Bifidobacteria Microflora 1988;7:71-74.
  22. Araya-Kojima Tomoko, Yaeshima Tomoko Ishibashi Norio Shimamura Seiichi Hayasawa Hirotoshi. Inhibitory Effects of Bifidobacterium longum BB536 on Harmful Intestinal Bacteria. Bifidobacteria Microflora 1995;14:59-66.
  23. Namba K, Yaeshima T Ishibashi N Hayasawa H and Yamazaki Shoji. Inhibitory Effects of Bifidobacterium longum on Enterohemorrhagic Escherichia coli O157:H7. Bioscience Microflora 2003;22:85-91.
  24. Igarashi M, Iiyama Y Kato R Tomita M Asami N Ezawa I. Effect of Bifidobacterium longum and lactulose on the strength of bone in ovariectomized osteoporosis model rates. Bifidus 1994;7:139-147.
  25. Yaeshima T, Takahashi S Ota S Nakagawa K Ishibashi N Hiramatsu A Ohashi T Hayasawa H Iino H. Effect of sweet yogurt containing Bifidobacterium longum BB536 on defecation frequency and fecal characteristics of healthy adults: A comparison with sweet standard yogurt. Kenko Eiyo Shokuhin Kenkyu 1998;1(3/4):29-34.
  26. Yaeshima T, Takahashi S Matsumoto N Ishibashi N Hayasawa H Lino H. Effect of yogurt containing Bifidobacterium longum BB536 on the intestinal environment, fecal characteristics and defecation frequency: A comparison with standard yogurt. Biosci Microflora 1997;16:73-77.
  27. Xiao J, Kondol S Odamaki T Miyaji K Yaeshima T Iwatsuki K Togashi H Benno Y. Effect of yogurt containing Bifidobacterium longum BB 536 on the defecation frequency and fecal characteristics of healthy adults: A double-blind cross over study. Japanese Journal of Lactic Acid Bacteria 2007;18:31-36.
  28. Yaeshima T, Takahashi S Ogura A Konno T Iwatsuki K Ishibashi N Hayasawa H. Effect of Non-fermented Milk Containing Bifidobacterium longum BB536 on the Defecation Frequency and Fecal Characteristics in Healthy Adults. Journal of Nutrition Food 2001;4:1-6.
  29. Ogata T, Nakamura T Anjitsu K Yaeshima T Takahashi S Fukuwatari Y Ishibashi N Hayasawa H Fujisawa T Iino H. Effect of Bifidobacterium longum BB536 administration on the intestinal environment, defecation frequency and fecal characteristics of human volunteers. Biosci Microflora 1997;16:53-58.
  30. Iwabuchi N, Hiruta N Kanetada S Yaeshima T Iwatsuki K Yasui H. Effects of Intranasal Administration of Bifidobacterium longum BB536 on Mucosal Immune System in Respiratory Tract and Influenza Virus Infection in Mice. Milk Science 2009;38:129-133.
  31. Sekine I, Yoshiwara S Homma N Takanori H Tonosuka S. Effects of Bifidobacterium-containing milk on chemiluminescence reaction of peripheral leukocytes and mean corpuscular volume of red blood cells - a possible role of Bifidobacterium on activation of macrophages. Therapeutics (Japan) 1985;14:691-695.
  32. Singh, J., Rivenson, A., Tomita, M., Shimamura, S., Ishibashi, N., and Reddy, B. S. Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis 1997;18:833-841. View abstract.
  33. Reddy, B. S. and Rivenson, A. Inhibitory effect of Bifidobacterium longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo[4,5-f]quinoline, a food mutagen. Cancer Res. 9-1-1993;53:3914-3918. View abstract.
  34. Yamazaki, S., Machii, K., Tsuyuki, S., Momose, H., Kawashima, T., and Ueda, K. Immunological responses to monoassociated Bifidobacterium longum and their relation to prevention of bacterial invasion. Immunology 1985;56:43-50. View abstract.
  35. Kondo, J., Xiao, J. Z., Shirahata, A., Baba, M., Abe, A., Ogawa, K., and Shimoda, T. Modulatory effects of Bifidobacterium longum BB536 on defecation in elderly patients receiving enteral feeding. World J Gastroenterol 4-14-2013;19:2162-2170. View abstract.
  36. Akatsu, H., Iwabuchi, N., Xiao, J. Z., Matsuyama, Z., Kurihara, R., Okuda, K., Yamamoto, T., and Maruyama, M. Clinical Effects of Probiotic Bifidobacterium longum BB536 on Immune Function and Intestinal Microbiota in Elderly Patients Receiving Enteral Tube Feeding. JPEN J Parenter Enteral Nutr 11-27-2012; View abstract.
  37. Odamaki, T., Sugahara, H., Yonezawa, S., Yaeshima, T., Iwatsuki, K., Tanabe, S., Tominaga, T., Togashi, H., Benno, Y., and Xiao, J. Z. Effect of the oral intake of yogurt containing Bifidobacterium longum BB536 on the cell numbers of enterotoxigenic Bacteroides fragilis in microbiota. Anaerobe. 2012;18:14-18. View abstract.
  38. Iwabuchi, N., Xiao, J. Z., Yaeshima, T., and Iwatsuki, K. Oral administration of Bifidobacterium longum ameliorates influenza virus infection in mice. Biol.Pharm.Bull. 2011;34:1352-1355. View abstract.
  39. Simakachorn, N., Bibiloni, R., Yimyaem, P., Tongpenyai, Y., Varavithaya, W., Grathwohl, D., Reuteler, G., Maire, J. C., Blum, S., Steenhout, P., Benyacoub, J., and Schiffrin, E. J. Tolerance, safety, and effect on the faecal microbiota of an enteral formula supplemented with pre- and probiotics in critically ill children. J Pediatr.Gastroenterol.Nutr. 2011;53:174-181. View abstract.
  40. Hascoet, J. M., Hubert, C., Rochat, F., Legagneur, H., Gaga, S., Emady-Azar, S., and Steenhout, P. G. Effect of formula composition on the development of infant gut microbiota. J Pediatr.Gastroenterol.Nutr. 2011;52:756-762. View abstract.
  41. Firmansyah, A., Dwipoerwantoro, P. G., Kadim, M., Alatas, S., Conus, N., Lestarina, L., Bouisset, F., and Steenhout, P. Improved growth of toddlers fed a milk containing synbiotics. Asia Pac.J Clin.Nutr. 2011;20:69-76. View abstract.
  42. Tang, M. L., Lahtinen, S. J., and Boyle, R. J. Probiotics and prebiotics: clinical effects in allergic disease. Curr.Opin.Pediatr. 2010;22:626-634. View abstract.
  43. Namba, K., Hatano, M., Yaeshima, T., Takase, M., and Suzuki, K. Effects of Bifidobacterium longum BB536 administration on influenza infection, influenza vaccine antibody titer, and cell-mediated immunity in the elderly. Biosci.Biotechnol.Biochem. 2010;74:939-945. View abstract.
  44. Gianotti, L., Morelli, L., Galbiati, F., Rocchetti, S., Coppola, S., Beneduce, A., Gilardini, C., Zonenschain, D., Nespoli, A., and Braga, M. A randomized double-blind trial on perioperative administration of probiotics in colorectal cancer patients. World J Gastroenterol. 1-14-2010;16:167-175. View abstract.
  45. Andrade, S. and Borges, N. Effect of fermented milk containing Lactobacillus acidophilus and Bifidobacterium longum on plasma lipids of women with normal or moderately elevated cholesterol. J.Dairy Res. 2009;76:469-474. View abstract.
  46. Rouge, C., Piloquet, H., Butel, M. J., Berger, B., Rochat, F., Ferraris, L., Des, Robert C., Legrand, A., de la Cochetiere, M. F., N'Guyen, J. M., Vodovar, M., Voyer, M., Darmaun, D., and Roze, J. C. Oral supplementation with probiotics in very-low-birth-weight preterm infants: a randomized, double-blind, placebo-controlled trial. Am.J Clin.Nutr. 2009;89:1828-1835. View abstract.
  47. Iwabuchi, N., Takahashi, N., Xiao, J. Z., Yonezawa, S., Yaeshima, T., Iwatsuki, K., and Hachimura, S. Suppressive effects of Bifidobacterium longum on the production of Th2-attracting chemokines induced with T cell-antigen-presenting cell interactions. FEMS Immunol.Med.Microbiol. 2009;55:324-334. View abstract.
  48. Takeda, Y., Nakase, H., Namba, K., Inoue, S., Ueno, S., Uza, N., and Chiba, T. Upregulation of T-bet and tight junction molecules by Bifidobactrium longum improves colonic inflammation of ulcerative colitis. Inflamm.Bowel.Dis. 2009;15:1617-1618. View abstract.
  49. Soh, S. E., Aw, M., Gerez, I., Chong, Y. S., Rauff, M., Ng, Y. P., Wong, H. B., Pai, N., Lee, B. W., and Shek, L. P. Probiotic supplementation in the first 6 months of life in at risk Asian infants--effects on eczema and atopic sensitization at the age of 1 year. Clin.Exp.Allergy 2009;39:571-578. View abstract.
  50. Odamaki, T., Xiao, J. Z., Sakamoto, M., Kondo, S., Yaeshima, T., Iwatsuki, K., Togashi, H., Enomoto, T., and Benno, Y. Distribution of different species of the Bacteroides fragilis group in individuals with Japanese cedar pollinosis. Appl.Environ.Microbiol. 2008;74:6814-6817. View abstract.
  51. del Giudice, M. M. and Brunese, F. P. Probiotics, prebiotics, and allergy in children: what's new in the last year? J Clin.Gastroenterol. 2008;42 Suppl 3 Pt 2:S205-S208. View abstract.
  52. Chouraqui, J. P., Grathwohl, D., Labaune, J. M., Hascoet, J. M., de, Montgolfier, I, Leclaire, M., Giarre, M., and Steenhout, P. Assessment of the safety, tolerance, and protective effect against diarrhea of infant formulas containing mixtures of probiotics or probiotics and prebiotics in a randomized controlled trial. Am.J Clin.Nutr. 2008;87:1365-1373. View abstract.
  53. Matsumoto, T., Ishikawa, H., Tateda, K., Yaeshima, T., Ishibashi, N., and Yamaguchi, K. Oral administration of Bifidobacterium longum prevents gut-derived Pseudomonas aeruginosa sepsis in mice. J Appl.Microbiol. 2008;104:672-680. View abstract.
  54. Odamaki, T., Xiao, J. Z., Iwabuchi, N., Sakamoto, M., Takahashi, N., Kondo, S., Miyaji, K., Iwatsuki, K., Togashi, H., Enomoto, T., and Benno, Y. Influence of Bifidobacterium longum BB536 intake on faecal microbiota in individuals with Japanese cedar pollinosis during the pollen season. J Med.Microbiol. 2007;56(Pt 10):1301-1308. View abstract.
  55. Iwabuchi, N., Takahashi, N., Xiao, J. Z., Miyaji, K., and Iwatsuki, K. In vitro Th1 cytokine-independent Th2 suppressive effects of bifidobacteria. Microbiol.Immunol. 2007;51:649-660. View abstract.
  56. Xiao, J. Z., Kondo, S., Takahashi, N., Odamaki, T., Iwabuchi, N., Miyaji, K., Iwatsuki, K., and Enomoto, T. Changes in plasma TARC levels during Japanese cedar pollen season and relationships with symptom development. Int.Arch.Allergy Immunol. 2007;144:123-127. View abstract.
  57. Odamaki, T., Xiao, J. Z., Iwabuchi, N., Sakamoto, M., Takahashi, N., Kondo, S., Iwatsuki, K., Kokubo, S., Togashi, H., Enomoto, T., and Benno, Y. Fluctuation of fecal microbiota in individuals with Japanese cedar pollinosis during the pollen season and influence of probiotic intake. J Investig.Allergol.Clin.Immunol. 2007;17:92-100. View abstract.
  58. Xiao, J. Z., Kondo, S., Yanagisawa, N., Miyaji, K., Enomoto, K., Sakoda, T., Iwatsuki, K., and Enomoto, T. Clinical efficacy of probiotic Bifidobacterium longum for the treatment of symptoms of Japanese cedar pollen allergy in subjects evaluated in an environmental exposure unit. Allergol.Int. 2007;56:67-75. View abstract.
  59. Puccio, G., Cajozzo, C., Meli, F., Rochat, F., Grathwohl, D., and Steenhout, P. Clinical evaluation of a new starter formula for infants containing live Bifidobacterium longum BL999 and prebiotics. Nutrition 2007;23:1-8. View abstract.
  60. Xiao, J. Z., Kondo, S., Yanagisawa, N., Takahashi, N., Odamaki, T., Iwabuchi, N., Miyaji, K., Iwatsuki, K., Togashi, H., Enomoto, K., and Enomoto, T. Probiotics in the treatment of Japanese cedar pollinosis: a double-blind placebo-controlled trial. Clin.Exp.Allergy 2006;36:1425-1435. View abstract.
  61. Xiao, J. Z., Kondo, S., Yanagisawa, N., Takahashi, N., Odamaki, T., Iwabuchi, N., Iwatsuki, K., Kokubo, S., Togashi, H., Enomoto, K., and Enomoto, T. Effect of probiotic Bifidobacterium longum BB536 [corrected] in relieving clinical symptoms and modulating plasma cytokine levels of Japanese cedar pollinosis during the pollen season. A randomized double-blind, placebo-controlled trial. J Investig.Allergol.Clin.Immunol. 2006;16:86-93. View abstract.
  62. Bennet, R., Nord, C. E., and Zetterstrom, R. Transient colonization of the gut of newborn infants by orally administered bifidobacteria and lactobacilli. Acta Paediatr. 1992;81:784-787. View abstract.
  63. Zsivkovits, M., Fekadu, K., Sontag, G., Nabinger, U., Huber, W. W., Kundi, M., Chakraborty, A., Foissy, H., and Knasmuller, S. Prevention of heterocyclic amine-induced DNA damage in colon and liver of rats by different lactobacillus strains. Carcinogenesis 2003;24:1913-1918. View abstract.
  64. Orrhage, K., Sjostedt, S., and Nord, C. E. Effect of supplements with lactic acid bacteria and oligofructose on the intestinal microflora during administration of cefpodoxime proxetil. J Antimicrob.Chemother. 2000;46:603-612. View abstract.
  65. Xiao JZ, Takahashi S, Odamaki T, et al. Antibiotic susceptibility of bifidobacterial strains distributed in the Japanese market. Biosci Biotechnol Biochem. 2010;74:336-42. View abstract.
  66. AlFaleh K, Anabrees J, Bassler D, Al-Kharfi T. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database of Systematic Reviews 2011, Issue 3. Art. No.: CD005496. DOI: 10.1002/14651858.CD005496.pub3. View abstract.
  67. Tabbers MM, Milliano I, Roseboom MG, Benninga MA. Is Bifidobacterium breve effective in the treatment of childhood constipation? Results from a pilot study. Nutr J 2011;10:19. View abstract.
  68. Leyer GJ, Li S, Mubasher ME, et al. Probiotic effects on cold and influenza-like symptom incidence and duration in children. Pediatrics 2009;124:e172-e179. View abstract.
  69. Miele E, Pascarella F, Giannetti E. et al. Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. Am J Gastroenterol 2009;104:437-43. View abstract.
  70. Kuhbacher T, Ott SJ, Helwig U, et al. Bacterial and fungal microbiota in relation to probiotic therapy (VSL#3) in pouchitis. Gut 2006;55:833-41. View abstract.
  71. Bibiloni R, Fedorak RN, Tannock GW, et al. VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol 2005;100:1539-46. View abstract.
  72. Tursi A, Brandimarte G, Giorgetti GM, et al. Low-dose balsalazide plus a high-potency probiotic preparation is more effective than balsalazide alone or mesalazine in the treatment of acute mild-to-moderate ulcerative colitis. Med Sci Monit 2004;10:PI126-31. View abstract.
  73. Kato K, Mizuno S, Umesaki Y, et al. Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther 2004;20:1133-41. View abstract.
  74. McFarland LV. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol 2006;101:812-22. View abstract.
  75. O'Mahony L, McCarthy J, Kelly P, et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 2005;128:541-51. View abstract.
  76. Ishikawa H, Akedo I, Umesaki Y, et al. Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis. J Am Coll Nutr 2003;22:56-63. View abstract.
  77. Rastall RA. Bacteria in the gut: friends and foes and how to alter the balance. J Nutr 2004;134:2022S-2026S. View abstract.
  78. Mimura T, Rizzello F, Helwig U, et al. Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis. Gut 2004;53:108-14. View abstract.
  79. Cremonini F, Di Caro S, Covino M, et al. Effect of different probiotic preparations on anti-helicobacter pylori therapy-related side effects: a parallel group, triple blind, placebo-controlled study. Am J Gastroenterol 2002;97:2744-9. View abstract.
  80. Sullivan A, Barkholt L, Nord CE. Lactobacillus acidophilus, Bifidobacterium lactis and Lactobacillus F19 prevent antibiotic-associated ecological disturbances of Bacteroides fragilis in the intestine. J Antimicrob Chemother 2003;52:308-11. View abstract.
  81. Kim HJ, Camilleri M, McKinzie S, et al. A randomized controlled trial of a probiotic, VSL#3, on gut transit and symptoms in diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther 2003;17:895-904. . View abstract.
  82. Roberfroid MB. Prebiotics and probiotics: are they functional foods? Am J Clin Nutr 2000;71:1682S-7S. View abstract.
  83. Gionchetti P, Rizzello F, Venturi A, et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology 2000;119:305-9. View abstract.
  84. Rautio M, Jousimies-Somer H, Kauma H, et al. Liver abscess due to Lactobacillus rhamnosus strain indistinguishable from L. rhamnosus strain GG. Clin Infect Dis 1999;28:1159-60. View abstract.
  85. Goldin BR. Health Benefits of probiotics. Br J Nutr 1998;80:S203-7. View abstract.
  86. Kalima P, Masterton RG, Roddie PH, et al. Lactobacillus rhamnosus infection in a child following bone marrow transplant. J Infect 1996;32:165-7. View abstract.
  87. Saxelin M, Chuang NH, Chassy B, et al. Lactobacilli and bacteremia in southern Finland 1989-1992. Clin Infect Dis 1996;22:564-6. View abstract.
  88. Lewis SJ, Freedman AR. Review article: the use of biotherapeutic agents in the prevention and treatment of gastrointestinal disease. Aliment Pharmacol Ther 1998;12:807-22. View abstract.
  89. Meydani SN, Ha WK. Immunologic effects of yogurt. Am J Clin Nutr 2000;71:861-72. View abstract.
  90. Isolauri E, Arvola T, Sutas Y, et al. Probiotics in the management of atopic eczema. Clin Exp Allergy 2000;30:1604-10. View abstract.
  91. Korschunov VM, Smeyanov VV, Efimov BA, et al. Therapeutic use of an antibiotic-resistant Bifidobacterium preparation in men exposed to high-dose gamma-irradiation. J Med Microbiol 1996;44:70-4. View abstract.
  92. Venturi A, Gionchetti P, Rizzello F, et al. Impact on the composition of the faecal flora by a new probiotic preparation: preliminary data on maintenance treatment of patients with ulcerative colitis. Aliment Pharmacol Ther 1999;13:1103-8. View abstract.
  93. Phuapradit P, Varavithya W, Vathanophas K, et al. Reduction of rotavirus infection in children receiving bifidobacteria-supplemented formula. J Med Assoc Thai 1999;82:S43-S48. View abstract.
  94. Hoyos AB. Reduced incidence of necrotizing enterocolitis associated with enteral administration of Lactobacillus acidophilus and Bifidobacterium infantis to neonates in an intensive care unit. Int J Infect Dis 1999;3:197-202. View abstract.
  95. Pierce A. The American Pharmaceutical Association Practical Guide to Natural Medicines. New York: The Stonesong Press, 1999:19.
  96. Chen RM, Wu JJ, Lee SC, et al. Increase of intestinal Bifidobacterium and suppression of coliform bacteria with short-term yogurt ingestion. J Dairy Sci 1999:82:2308-14. View abstract.
  97. Ha GY, Yang CH, Kim H, Chong Y. Case of sepsis caused by Bifidobacterium longum. J Clin Microbiol 1999;37:1227-8. View abstract.
  98. Colombel JF, Cortot A, Neut C, Romond C. Yoghurt with Bifidobacterium longum reduces erythromycin-induced gastrointestinal effects. Lancet 1987;2:43.
  99. Hirayama K, Rafter J. The role of probiotic bacteria in cancer prevention. Microbes Infect 2000;2:681-6. View abstract.
  100. Macfarlane GT, Cummings JH. Probiotics and prebiotics: can regulating the activities of intestinal bacteria benefit health? BMJ 1999;318:999-1003. View abstract.
  101. Chiang BL, Sheih YH, Wang LH, et al. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses. Eur J Clin Nutr 2000;54:849-55. View abstract.
  102. Lievin V, Peiffer I, Hudault S, et al. Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut 2000;47:646-52. View abstract.
  103. Arunachalam K, Gill HS, Chandra RK. Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019). Eur J Clin Nutr 2000;54:263-7. View abstract.
  104. Bouhnik Y, Pochart P, Marteau P, et al. Fecal recovery in humans of viable bifidobacterium ingested in fermented milk. Gastroenterology 1992;102:875-8. View abstract.
  105. Saavedra JM, et al. Feeding of bifidobacterium bifidum and streptococcus thermophilus to infants in hospital for prevention of diarrhea and shedding of rotavirus. Lancet 1994;344:1046-9. View abstract.
  106. Scarpignato C, Rampal P. Prevention and treatment of traveler's diarrhea: A clinical pharmacological approach. Chemotherapy 1995;41:48-81. View abstract.
  107. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic Agents, A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870-5. View abstract.
Last reviewed - 11/30/2017